Third-Party Trademarks

Trademarks not owned by Tecplot, Inc. are used in this software and documentation to indicate compatibility with, or to describe use of Tecplot products with, particular products not owned by Tecplot, Inc. No endorsement by any third party of any Tecplot product (or vice versa) is intended.

3D Systems is a registered trademark or trademark of 3D Systems Corporation in the U.S. and/or other countries.

Mac, Macintosh, Mac OS, and Mac OS X are registered trademarks or trademarks of Apple, Incorporated in the U.S. and/or other countries.

Reflections is a registered trademark or trademark of Attachmate Corporation in the U.S. and/or other countries.

EnSight is a registered trademark or trademark of Computation Engineering International (CEI), Incorporated in the U.S. and/or other countries.

EDEM is a registered trademark or trademark of DEM Solutions Ltd in the U.S. and/or other countries.

Exceed, Exceed 3D, and Hummingbird, are registered trademarks or trademarks of OpenText Corporation in the U.S. and/or other countries.

Konqueror is a registered trademark or trademark of KDE e.V in the U.S. and/or other countries.

ECLIPSE Frontline is a registered trademark or trademark of Schlumberger Information Solutions (SI) in the U.S. and/or other countries.

Debian is a registered trademark or trademark of the Debian Project, Incorporated in the U.S. and/or other countries.

X is a registered trademark or trademark of XConsortium, Incorporated in the U.S. and/or other countries.

X Window System is a registered trademark or trademark of X Consortium, Incorporated in the U.S. and/or other countries.

ANSYS, Fluent and any and all ANSYS, Inc. branded, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS Incorporated or its subsidiaries in the U.S. and/or other countries.

Star-CCM+ is a registered trademark or trademark of CD-adapco in the U.S. and/or other countries.

Reprise License Manager is a registered trademark or trademark of Reprise Software, Inc. in the U.S. and/or other countries.

Python is a registered trademark or trademark of Python Software Foundation in the U.S. and/or other countries.

Abaqus, the 3DS logo, SHULIJA, the CATIA logo are registered trademarks or trademarks of Dassault Systèmes or its subsidiaries in the U.S. and/or other countries. The Abaqus suite is a product of Dassault Systèmes Simulia Corp., Providence, RI, USA. © Dassault Systèmes 2007

FLOW-3D is a registered trademark or trademark of Flow Science, Incorporated in the U.S. and/or other countries.

Adobe, Flash, Flash Player, Premier, and PostScript are registered trademarks or trademarks of Adobe Systems, Incorporated in the U.S. and/or other countries.

AutoCAD and DXF are registered trademarks or trademarks of Autodesk, Incorporated in the U.S. and/or other countries.

Ubuntu is a registered trademark or trademark of Canonical Limited in the U.S. and/or other countries.

NetGate is a registered trademark or trademark of Linotype GmbH in the U.S. and/or other countries.

Linux is a registered trademark or trademark of Linus Torvalds in the U.S. and/or other countries.

Windows is a registered trademark or trademark of Microsoft Corporation in the U.S. and/or other countries.

Firefox is a registered trademark or trademark of The Mozilla Foundation in the U.S. and/or other countries.

Netwide is a registered trademark or trademark of Netscape Communications Corporation in the U.S. and/or other countries.

MySQL is a registered trademark or trademark of Oracle, Incorporated in the U.S. and/or other countries.

Red Hat is a registered trademark or trademark of Red Hat, Incorporated in the U.S. and/or other countries.

Cortana is a registered trademark or trademark of Microsoft Corporation in the U.S. and/or other countries.

Sqlite is a registered trademark or trademark of SQLite Inc. in the U.S. and/or other countries.

Java is a registered trademark or trademark of Oracle, Incorporated in the U.S. and/or other countries.

OpenGL is a registered trademark or trademark of Silicon Graphics, Incorporated in the U.S. and/or other countries.

JPG is a registered trademark or trademark of Thomas G. Lane in the U.S. and/or other countries.
Table of Contents

Introduction to Tecplot 360 EX

1 Introduction ... 15
 Welcome Screen .. 16
 Input Devices .. 16
 Interface ... 18
 Getting Help ... 32

2 Using the Workspace .. 35
 Data Hierarchy .. 35
 Interface Coordinate Systems 37
 Frames ... 38
 Workspace Management Options 45
 View Modification .. 47
 Edit Menu .. 50

3 Data Structure .. 53
 Connectivity List .. 53
 Ordered Data .. 54
 Finite Element Data .. 57
 Variable Location (Cell-centered or Nodal) 58
 Face Neighbors ... 59
 Working with Unorganized Datasets 60
Loading Your Data

4 Loading Data .. 65
 Loading Data Using a Loader ... 66
 All Files and All Supported Files ... 72
 CGNS Loader ... 72
 CONVERGE Out File Loader ... 77
 DEM Loader .. 77
 DXF Loader ... 77
 EnSight Loader ... 79
 Excel Loader ... 79
 FEA Loader ... 83
 FLOW-3D Loader .. 89
 FLUENT Loader ... 93
 FYCOM Loader ... 98
 General Text Loader ... 99
 HDF Loader ... 108
 HDF5 Loader .. 109
 Kiva Loader .. 111
 PLOT3D Loader .. 112
 PLY Loader .. 118
 Tecplot-Format Loader ... 118
 Tecplot Subzone Loader ... 119
 Tecplot Layout Loader .. 120
 Text Spreadsheet Loader ... 120
 TRIX Loader ... 121
 VTK Data Loader .. 121
 Loading Remote Data using the Tecplot SZL Server 122
 Overwriting Data Files .. 127

Creating Plots

5 Creating Plots ... 131
 Creating Plots ... 131
 Data Journaling ... 132
 Data Sharing .. 132
 Data Set Information ... 133
 Color Chooser ... 138

6 XY and Polar Line Plots .. 141
 Mapping Style and Creation ... 142
 Line Map Layer .. 146
 Symbols Map Layer ... 159
7

Field Plots ... 171
Field Plot Plot Modification and the Zone Style Dialog 172
Time Aware .. 177
Data Point and Cell Labels .. 178
Three-dimensional Plot Control .. 180

8

Mesh Layer and Edge Layer ... 187
Mesh Layer .. 187
Edge Layer ... 189

9

Contour Layer ... 193
Contour Layer Modification ... 194
Contour & Multi-Coloring Details ... 195
Extract Contour Lines ... 207

10

Vector Layer ... 209
Vector Variables ... 209
Vector Plot Plot Modification ... 210
Vector Details .. 212

11

Scatter Layer .. 217
Scatter Plot Plot Modification ... 217
Scatter Size/Font .. 219
Scatter Legends ... 220

12

Shade Layer ... 221
Shade Layer Plot Modification ... 221

13

Translucency and Lighting ... 223
Translucency ... 224
Blanking .. 224
Lighting Effects ... 224
Three-dimensional Light Source .. 225

14

Slices ... 227
Interactively Created Slices .. 227
Extracting Slices to Zones ... 233
20
Data Operations ... 301
 Data Alteration through Equations .. 301
 Data Smoothing .. 313
 Fourier Transform .. 315
 Axial Rotation ... 317
 Zone Creation .. 317
 Data Extraction from an Existing Zone .. 322
 Zone Deletion ... 324
 Variable Deletion .. 325
 Data Interpolation .. 325
 Irregular Data Point Triangulation ... 330
 Data Spreadsheet .. 331

21
CFD Data Analysis .. 335
 Specifying Fluid Properties ... 335
 Specifying Reference Values .. 338
 Identifying Field Variables ... 339
 Setting Geometry and Boundary Options .. 341
 Unsteady Flow .. 345
 Calculating Variables .. 346
 Performing Integrations ... 351
 Calculating Turbulence Functions ... 363
 Calculating Particle Paths and Streaklines ... 364
 Analyzing Solution Error ... 373
 Extracting Fluid Flow Features ... 375

22
Probing ... 379
 Field Plot Probing with the Mouse .. 379
 Field Plot Probing by Specifying Coordinates and Indices 381
 Probe Sidebar ... 382
 Line Plot Probing with the Mouse ... 385
 Data Editing ... 387

Final Output

23
Output ... 391
 Layout Files, Layout Package Files, Stylesheets .. 391
 Data File Writing ... 395

24
Printing ... 397
 Plot Printing .. 397
 Setup ... 398
Exporting ... 403
 Layout Packages ... 404
 Vector Graphics Format .. 405
 Image Format ... 408
 Anti-aliasing Images ... 413
 Clipboard Exporting to Other Applications 413

Scripting

Macros ... 417
 Macro Creation ... 417
 Macro Playback .. 420
 Macro Debugger .. 421

Batch Processing .. 425
 Batch Processing Setup ... 425
 Batch Processing Using a Layout File 426
 Multiple Data File Processing 427
 Batch Processing Diagnostics 428
 Batch Converting to SGL Format 428

PyTecplot ... 435
 PyTecplot Recording ... 435
 PyTecplot Connections ... 436

Advanced Topics

Animation ... 441
 Animation Tools .. 441
 Movie File Creation with Macros 451
 Advanced Animation Techniques 451
 Animation Export ... 453

Customization .. 459
 Custom Files loaded on Startup 459
 Configuration Files ... 460
 Performance Dialog ... 463
 Custom Character and Symbol Definition 467
Appendices

A Command Line Options .. 503
 Tecplot 360 EX Command Line .. 503
 Using Command Line Options in Windows Shortcuts 505
 Exit Codes .. 507

B Tecplot 360 EX Utilities ... 509
 Excel Add-In .. 509
 LPK View ... 511
 Preplot ... 512
 Pltview ... 512

C Shortcuts ... 515
 Keyboard Shortcuts .. 515
 Extended Mouse Operations ... 519

D License Management ... 521
 Entering Your License .. 521
 License Roaming ... 525

E Glossary ... 529

F Calculate Variables Reference .. 539
 Symbols .. 539
 Scalar Grid Quality Functions ... 540
 Vector Grid Quality Functions ... 543
 Scalar Flow Variables .. 543
 Vector Flow Variables .. 549
 The Velocity Gradient Tensor ... 550

G Functional Limits ... 551
 Hard Limits .. 551
 Soft Limits ... 553
Part 1 Introduction to Tecplot 360 EX
Introduction

Tecplot 360 EX is a powerful tool for visualizing a wide range of technical data. It offers line plotting, 2D and 3D surface plots in a variety of formats, and 3D volumetric visualization.

The user documentation for Tecplot 360 EX includes these resources:

- **Online Help** - Available from within Tecplot 360 EX, using the Help menu or Help buttons in most dialogs to get you the information you need when you need it.
- **User’s Manual** (this document) - This manual provides a complete description of working with Tecplot 360 EX features.
- **Getting Started Manual** - New users are encouraged to work through the tutorials provided in the Getting Started Manual to learn how to work with key features in Tecplot 360 EX.
- **Scripting Guide** - This guide provides Tecplot macro command syntax and information on working with macro files and commands.
- **Quick Reference Guide** - This guide provides a handy reference for dynamic text, macro variables, keyboard shortcuts, special characters, and more.
- **Data Format Guide** - This guide provides information on outputting simulator data to Tecplot 360 file format.
- **Installation Instructions** - These instructions give a detailed description of how to install Tecplot 360 EX on your system.
- **Release Notes** - These notes provide information about new and/or updated Tecplot 360 features.
Introduction

1 - 1 Welcome Screen

When you start Tecplot 360 EX, the Welcome Screen, shown below, appears. You can also open it at any time (even while working on a plot in Tecplot 360 EX) by choosing View> Welcome Screen.

The Welcome Screen contains links that help you quickly get started working with your data and Tecplot 360 EX.

- Across the top are links for creating a new layout and for opening existing layouts and data files.
- The left section provides a list of layouts you have recently worked with.
- The right column contains links to documentation and other resources to help you get the most out of Tecplot 360 EX.
- At the very bottom of the right column is information for contacting Technical Support, including the version and platform information you will need for a support incident.

The Welcome Screen automatically disappears when you open a layout or create a new one. You may also close it manually by clicking the red X button in the upper right corner; this returns you to your existing layout if you have chosen View> Welcome Screen while you were working with a plot.

1 - 2 Input Devices

Tecplot 360 EX supports the following input devices:

- **Standard mouse** - Used for pointing at, selecting, and manipulating objects in the workspace; changing the view; choosing fields and manipulating controls in dialogs and sidebars; and performing actions or commands using the toolbar or menus. Most mice have multiple buttons and a scroll wheel, which provide quick access to specific functions.
Input Devices

- **Keyboard** - Used for entering data and text and for activating commands using menu shortcuts. In conjunction with a mouse, can be used to switch modes when clicking or dragging.

- **3D mouse** - A secondary input device that allows 3D Cartesian plots to be zoomed, translated, and rotated with a touch. Additionally, the always-active 3D mouse doesn’t make you select mouse modes, commands, or keyboard shortcuts. A 3D mouse can therefore enable faster exploration of your data and improve the experience of working with your 3D plots.

 Tecplot 360 EX supports 3D mouse products from 3Dconnexion, such as the SpaceMouse, SpaceNavigator, and SpacePilot lines, and only on the Windows platform.

Actions available with a 3D mouse include:

- **Translation** - Push the mouse cap left or right, pull it up, or push it down, to translate the plot left/right or up/down on the screen.

- **Zooming** - Push the mouse cap toward you or away from you to zoom the plot. Hold down the Alt key while zooming to switch zoom methods. The default zoom method depends on whether the current frame’s 3D view mode is perspective or orthographic (see Section 7.4.6 “Three-dimensional View Details” on page 184). The results of zooming using the 3D mouse and the Alt key are shown here.

- **Rotation** - Rotation is around the defined center of rotation, by default the center of the data. However, the axis of rotation is relative to the screen rather than to the data.
 - **X axis** - Tilt the mouse cap forward or back to rotate around the screen’s X axis, as if rolling your plot toward you or away from you.
 - **Y axis** - Twist the mouse cap clockwise or counterclockwise to rotate around the screen’s Y axis, as if on a lazy susan.
 - **Z axis** - Tilt the mouse cap left or right to rotate around the screen’s Z axis, like the hands of a clock.

With practice, it is possible to perform more than one of these operations at the same time. At first, though, it is best to be careful to invoke only one function at a time.

Most 3D mice also have one or more buttons, which can be mapped to commands that you use frequently using the software provided with the device.

An area of interest can be inspected in greater detail from any angle if the origin of rotation is assigned to it. Mapping the “o” key (orientation change) to a 3D mouse via the device GUI may facilitate a more natural workflow. Simply point the regular mouse cursor at the area of interest and press the orientation change button.

Tecplot 360 EX supports the following actions (built-in to the 3D mouse software) that may be mapped to buttons using the device software:

- **Fit (same as View>Fit Surfaces)**
- **Front, Back, Top, Bottom, Left, and Right View**
- **Isometric View 1 (Tecplot 360 EX default view) and 2 (theta 180° from default)**
Introduction

- Roll CW and CCW (in 90° increments)

1 - 3 Interface

Five major sections make up the Tecplot 360 EX interface.

1 - 3.1 Menu Bar

The menu bar offers access to Tecplot 360 EX features.

Tecplot 360 EX’s features are organized into the following menus:

- **File** - Use the File menu to read or write data files and plot layouts, and print and export plots.
- **Edit** - Use the Edit menu to select, undo, cut, copy, paste, and delete objects, and to change the draw order for selected items.

Generally, **Cut**, **Copy**, and **Paste** of items other than text work only within Tecplot 360 EX. You can, however, copy an image of a selected frame or the text of a selected text object to the clipboard. See “Clipboard Exporting to Other Applications” on page 413.

- **View** - Use the View menu to manipulate the way your data is shown or to open a sidebar or the Welcome Screen. See “View Modification” on page 47.
- **Plot** - Use the Plot menu to control the style of your plots. The menu items available depend on the active plot type (chosen in the Plot sidebar).
Interface

- **Insert** - Use the **Insert** menu to add text and geometries (polylines, squares, rectangles, circles, and ellipses). If you have a 3D zone, you may also use the **Insert** menu to insert a slice. If the plot type is set to 2D or 3D Cartesian, you may insert a streamtrace.
- **Animate** - Use the **Animate** menu to create animations of your plot.
- **Data** - Use the **Data** menu to create, manipulate, and examine data. Types of data manipulation available in Tecplot 360 EX include zone creation, interpolation, triangulation, and creation or alteration of variables.
- **Frame** - Use the **Frame** menu to create, edit, and control frames.
- **Options** - Use the **Options** menu to control your Tecplot 360 EX experience, including rulers, grids, and performance.
- **Scripting** - Use the **Scripting** menu to play or record macros, and to access the **Quick Macros Panel**.
- **Tools** - Use the **Tools** menu to launch an add-on.
- **Analyze** - Use the **Analyze** menu to examine grid quality, perform integrations, generate particle paths, extract flow features, and estimate numerical errors.
- **Help** - Get help for Tecplot 360 EX features, or view the About dialog, which contains version and platform information.

1 - 3.2 **Context Menu and Toolbar**

In many places within Tecplot 360 EX, clicking with the right mouse button displays a **context menu** that gives you quick access to just the operations most relevant to what you’re clicking. Often, these operations are also available in some other way, such as using a toolbar button, the pull-down menus, or a dialog.

In the Tecplot 360 EX workspace, the following objects have context menus with the specified functions:

- **Frames** - Change frame order, load and save frame style, frame details
- **Axis** - Axis settings
- **Slices** - Hide, edit slice details, extract slices, slice style
- **Iso-surfaces** - Hide, choose variable, edit iso-surface details, extract surfaces, change iso-surface style
- **Zones** - Hide, deactivate, zone style
- **Streamtraces** - Extract, delete, streamtrace settings
- **3D orientation axis** - Hide axis, axis settings
- **Line maps** - Deactivate, copy, change curve type, mapping style, Fourier transform (when applicable), show curve details on plot; write curve details or data to file
- **Legends** - Hide, change box type, legend settings
- **Geometries (shapes)** - Change line and fill color, delete, edit geometry settings. For polylines, you may also extract data along the line.
- **Text** - Change color, cut, copy, delete, align (left, right, center, top, bottom), text settings.

When working with zones, slices, and iso-surfaces, a context toolbar appears above the context menu. This toolbar allows you to turn on or off the grid, contour, vector, shade, edge, and translucency layers for the selected object(s) by clicking the icons. (Iso-surfaces do not have vector or edge layers.) Additionally, you may adjust frequently-used style settings for each layer using the drop-down menus to the right of each icon, for example selecting a color for the grid (or choosing a variable by which to color it).

A different context toolbar appears when you right-click a line in XY or polar line plots. This toolbar allows you to turn on or off the line, symbol, and error bars for the selected line map by clicking the icons. You can also adjust the attributes of these (for example, line color, symbol shape, or error variable) using drop-down menus to the right of each icon.
Introduction

When a geometry object is right-clicked, the Geometry context menu appears. This menu allows you to Cut, Copy, Delete the object as well as adjust the line and fill attributes. When multiple geometries are selected, the Alignment of the objects can be adjusted as well.

Right-clicking on a Text object brings up the Text context menu. This menu allows you to Cut, Copy, Delete the object as well as change the alignment or open the Text details dialog. You can also adjust the text attributes such as bold, italics, color, and text angle.

In some places, such as in the Mapping Style and Zone Style dialogs, right-clicking is the primary way to alter the displayed data.

The right mouse button is also used for translating (moving) the plot. This doesn’t conflict with its use for context menus. The context menu appears when you right-click without moving the mouse; dragging with the right mouse button performs the translation operation.

1 - 3.3 Sidebars

Tecplot 360 EX’s three main sidebars provide easy access to frequently-used functionality:

- **Plot Sidebar** - Includes controls for manipulating the appearance of your plot.
- **Pages Sidebar** - A list of the pages currently open, allowing you to switch between them, and to create, rename, and delete pages.
- **Frames Sidebar** - A list of the frames in the current page, allowing you to easily manage their order and other characteristics.

Initially, the Plot and Pages sidebars appear “docked” on the left side of the workspace—attached to the left side of the plot area. The Frames sidebar is initially hidden, but appears on the left side of the workspace when enabled using the View menu.

Any visible sidebar may be moved to the right side of the workspace, or even dragged out of the workspace entirely (for example, to move it to another display) by dragging its title bar.
When more than one sidebar is docked to the same side of the workspace, they can be combined in two ways:

- **Tabbed panels** - Only one sidebar is visible at a time; tabs appear at the bottom of the sidebar to choose which sidebar you want to use. This is the default mode; the screen image in “Interface” on page 18 shows how this looks.

- **Sharing space vertically** - Both sidebars are visible at the same time. You can drag the boundary between the two sidebars to adjust the proportion of the space used by each.

Which style is used depends on where you dock the second sidebar: drag to the top or bottom of the already-docked sidebar to split the area, or drag to the middle to combine them and use tabs to switch between them.

Additional sidebars are available for certain other features throughout Tecplot 360 EX. For example, the **Quick Macro Panel** is a sidebar that initially appears docked to the right side of the workspace. Like the other sidebars, it may be “torn off” from the window or share space with another sidebar. The **Probe Sidebar** is another; it displays the results of probe operations.

Any sidebar may be closed if it is in your way. To open it again, choose the desired sidebar from the appropriate menu, or right-click any sidebar or the menu bar and choose the desired sidebar from the context menu.

<table>
<thead>
<tr>
<th>Sidebar</th>
<th>Menu Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot</td>
<td>View>Plot sidebar</td>
</tr>
<tr>
<td>Pages</td>
<td>View>Pages sidebar</td>
</tr>
<tr>
<td>Frames</td>
<td>View>Frames sidebar</td>
</tr>
<tr>
<td>Probe</td>
<td>Data>Probe sidebar</td>
</tr>
<tr>
<td>Quick Macro Panel</td>
<td>Scripting>Quick Macros</td>
</tr>
</tbody>
</table>

Plot Sidebar

The controls available in the Plot sidebar depend on the plot type of the active frame. For 2D or 3D Cartesian plot types, you can show or hide zone layers, and zone effects, and derived objects from your plot. For line plots (XY and polar) you can show or hide mapping layers.

You can open the Plot sidebar from the View menu if it is not currently visible. To customize your plot, simply:

- Select a plot type from the **Plot Types** drop-down menu.
- Use the toggle switches to add or subtract **Zone Layers/Map Layers**, or **Zone Effects**, or **Derived Objects**. Use the Zone Style/Mapping Style dialogs to further customize your plot by...
Introduction

showing or hiding zones in specific plot layers/mappings, changing the way a zone or group of zones is displayed, or changing various plot settings.

Figure 1-1. The Plot sidebar as it appears for a 3D Cartesian plot (left) and XY Line plot (right).

Plot Types

The Plot Type, combined with a frame’s dataset, active layers, and their associated attributes, define a plot. Each plot type represents one view of the data. There are five plot types available:

- **3D Cartesian** - 3D plots of surfaces and volumes.
- **2D Cartesian** - 2D plots of surfaces, where the vertical and horizontal axis are both dependent variables (i.e. \(x = f(A) \) and \(y = f(A) \), where \(A \) is another variable).
- **XY Line** - Line plots of independent and dependent variables on a Cartesian grid. Typically the horizontal axis (x) is the independent variable and the y-axis a dependent variable, \(y = f(x) \).
- **Polar Line** - Line plots of independent and dependent variables on a polar grid.
- **Sketch** - Create plots without data such as drawings, flow charts, and viewgraphs.

Zone Layers

A layer is a way of representing a frame’s dataset. The complete plot is the sum of all the active layers, axes, text, geometries, and other elements added to the data plotted in the layers. The six zone layers for 2D and 3D Cartesian plot types are:

- **Mesh** - A grid of lines connecting the data points within each zone.
- **Contour** - Iso-valued lines, the region between these lines can be set to contour flooding.
• **Shade** - Used to tint each zone with a solid color, or to add light-source shading to a 3D surface plot. Used in conjunction with the Lighting zone effect you may set Paned or Gouraud shading. Used in conjunction with the Translucency zone effect, you may create a translucent surface for your plot.

• **Vector** - The direction and magnitude of vector quantities.

• **Edge** - Zone edges and creases for ordered data and creases for finite element data.

• **Scatter** - Symbols at the location of each data point.

Zone Style

Select the [Zone Style] button to launch the Zone Style dialog. The Zone Style dialog is used to customize the zone layers that you have added to your plot. Refer to the chapter for each zone layer for details on working with the Zone Style dialog.

Transient Controls

When working with transient data, simply press the Play button in the Plot sidebar to animate over time. The active frame will be animated from the Current Solution Time to the last time step. You may also drag the slider to change the Current Solution Time of your plot.

The Animation Controls have the following functions:

- \[\text{←}\] Jumps to the Starting Value. (Keyboard: Home)
- \[\text{←}\] Jumps toward the Starting Value by one step. (Keyboard: Left arrow)
- \[\text{→}\] Runs the animation as specified by the ‘Operation’ field of the Time Details dialog. The Play button becomes a Pause button while the animation is playing. (Keyboard: Space bar)
- \[\text{→}\] Jumps toward the Ending Value by one step. (Keyboard: Right arrow)
- \[\text{→}\] Jumps to the Ending Value. (Keyboard: End)

Use the Details [...] button to launch the Time Details dialog.

See Section 7.2 “Time Aware” for more information on Time controls and the Time Details dialog.

Derived Objects

For Cartesian plot types (2D and 3D): Toggle-on Iso-surfaces, Slices, or Streamtraces from the Plot sidebar to add any or all of these elements to your plot. For convenience, the tool buttons for Slices and Streamtraces also appear here. The Details dialogs for each of the derived objects can be accessed via the Details [...] button. Refer to Chapter 16: “Iso-surfaces”, Chapter 14: “Slices”, or Chapter 15: “Streamtraces” for details on working with these objects.

Zone Effects

For 3D Cartesian plot types, use the Plot sidebar to turn lighting and translucency on or off. Only shaded and flooded contour surface plot types are affected. Refer to Chapter 12: “Shade Layer” and Chapter 13: “Translucency and Lighting” for additional information.
Introduction

Map Layers

A layer is a way of representing a frame's dataset. The complete plot is the sum of all the active layers, axes, text, geometries, and other elements added to the data plotted in the layers.

The four XY Line map layers are:

- **Lines** - Plots a pair of variables, X and Y, as a set of line segments or a fitted curve.
- **Symbols** - A pair of variables, X and Y, as individual data points represented by a symbol you specify.
- **Bars** - A pair of variables, X and Y, as a horizontal or vertical bar chart.
- **Error Bars** - Allows you to add error bars to your plot.

The two map layers for Polar Line are:

- **Lines** - A pair of variables, X and Y, as a set of line segments or a fitted curve.
- **Symbols** - A pair of variables, e.g. X and Y, as individual data points represented by a symbol you specify.

Select the [Mapping Style] button to launch the **Mapping Style** dialog. The **Mapping Style** dialog allows you to customize the style settings for each of the plot layers and specify the points to plot. The pages of the dialog are discussed in detail in Chapter 6: “XY and Polar Line Plots”.

Snap Modes

Snap modes allow you to easily place objects at convenient reference points, either on the axis grid or on the workspace paper. Most movable objects (including text, images, geometries, frames, axes, legends, and the orientation axis) can be snapped. Data points in zones and line maps are also subject to snap modes when being adjusted.

The snap controls in the Plot sidebar become available when such objects are selected using the Selector or the Adjustor, or, in the case of text and geometries, when they are being placed initially using the appropriate tool.

- **None** - No snapping is performed; objects may be positioned freely.
- **Snap to Grid** - Constrain object movement to whole steps on the axis grid as defined in the Grid page of the Axis Details dialog (Plots-Axis); see Axis Grid Options. This can be useful for aligning objects with points of interest in a plot.
- **Snap to Paper** - Constrain object movement to whole steps on the paper's grid as defined in the Ruler/Grid dialog (Options>Ruler/Grid); see Grid and Ruler Set-Up. This can be useful for positioning frames precisely for printing, or for absolute positioning of text, geometries, and other plot elements.

One or the other of the snap modes may be unavailable depending on the plot type or the kind of object being moved. For example, a frame cannot be aligned to the grid because it contains the grid, so the Grid snap mode is disabled when moving a frame.

Redraw Buttons

The redraw buttons allow you to keep your plot up-to-date: Clicking the middle mouse button redraws the current active frame.

24
Auto Redraw

Use Auto Redraw - When selected, the plot will be automatically redrawn, whenever style or data changes. Some users prefer to turn this option off while setting multiple style settings and then manually press the [Redraw] or [Redraw All] button on the Plot sidebar to see a full plot.

You can interrupt an auto-redraw at any time with a mouse click or key press.

Pages Sidebar

In Tecplot 360 EX, a page is a container for any number of frames, each of which is a container for a plot. A layout can contain any number of pages (although many layouts contain only one). You can use the Pages sidebar to see the pages in the current layout, to choose which page is displayed in the workspace, and to create, rename, and delete pages.

The Pages sidebar may be opened from the View menu if it is not currently visible. In the Pages sidebar, you may:

- Click Add to add a new page. The new page is initially named "Untitled."
- Click a page to view it in the workspace. Only one page is visible at a time.
- Double-click a page to specify or change its name. The name becomes editable in the sidebar; simply type the new name, then press Enter.
- Click Delete to delete the active page.

The Cut, Copy, and Paste commands on the Edit menu can be used to move or copy frames between pages. Click a frame border to select it, copy or cut it to the clipboard, then switch to the destination page using the Pages sidebar and paste it.

Frames Sidebar

The Frames sidebar allows you to manage the frames on the current page, including activating and ordering them, which is particularly useful when you have many overlapping frames on a page. It is initially hidden, but may be opened from the View menu. See Section 2 - 3 "Frames" on page 38 for more information on working with frames.

1 - 3.4 Toolbar

Each of the tools represented in the Toolbar changes the mouse mode and allows you to interactively edit your plot.

The Toolbar is actually up to four separate toolbars, with buttons grouped by function.

- File toolbar - Buttons for dealing with files (hidden by default)
- View toolbar - Buttons for manipulating the view
- Data toolbar - Buttons for working with data
- Insert toolbar - Buttons that insert objects into the workspace.
Introduction

In the default toolbar configuration, shown above, the toolbars appear next to each other. Each, however, can be moved independently to any edge of the workspace by grabbing the drag handle at the left edge of the toolbar. To hide or show a toolbar, right-click the menu bar and choose the desired toolbar.

Selector Tool

Use the Selector tool to select objects in your workspace. To select multiple objects, hold down Shift while clicking the second and subsequent objects. The selected objects can then be moved (translated) using the Selector tool itself.

The following kinds of objects can be moved (translated) using the Selector tool:

- frames
- axis grid area
- text
- geometries
- contour labels
- streamtraces
- streamtrace termination line
- legends
- 3D frame axis

To select an object and open that object’s attributes dialog, double-click any object.

Adjustor Tool

Use the Adjustor tool to perform any of the following modifications to your plot and data:

- Location of individual or groups of data points in the grid.
- Values of the dataset variables at a particular point.
- Length or placement of individual axes (2D Cartesian and XY Line plot types only).
- Spacing between an axis label and its associated axis (2D Cartesian and XY Line plot types only).
- The points in a polyline (and therefore its shape).

The Adjustor tool behaves like the Selector tool when you click objects other than those listed above. For example, if you click a rectangular geometry, the entire object is selected, since the Adjustor tool has no special functionality with a rectangular geometry. When adjusting a polyline, click close to the points in the polyline to avoid the entire object being selected.

The Adjustor tool can alter your data. Be sure you want to use the Adjustor tool before dragging points in the data region.

Click a point or object to select it. To select multiple points, you can hold Shift while clicking additional points after the first. In line plots, you can select points from only one mapping at a time.
Once you have selected all desired points, move the Adjustor over the selection handles of one of the points, then click-and-drag to the desired location of the first data point. The other selected points will move as a unit with respect to the chosen data point, maintaining their relative positions.

For XY Line plots, if several mappings are using the same data for one of the variables, adjusting one of the mappings will result in simultaneous adjustments to the others. You can avoid this by pressing the H or V key on your keyboard while adjusting the selected point. The H and V keys restrict the adjustment to the horizontal and vertical directions, respectively.

Zoom Tool

Zoom into or away from the plot. Geometries zoom with the plot, however, text does not.

When a mouse-click occurs (without dragging), the zooming is centered at the location of your click.

There are two zoom modes: plot zooming and paper zooming.

For plot zooming - drag the magnifying glass cursor to draw a box around the region that you want to fit into the frame. The box may be larger than the frame. Making the box larger than the frame zooms away from the plot. The region within the view box will be resized to fit into the frame.

If **Snap to Grid** (located in the Sidebar) is selected, you cannot make the zoom box larger than the grid area.

To return to the previous view, choose **View> Last** menu (Control-L). To restore the original 2D view, choose **View> Fit Everything** (Control-E) or **View> Fit to Full Size** (Control-F).

The results of plot zooming for the 2D plot type are dependent upon the axis mode selected in the **Axis Details** dialog (accessed via the **Plot** menu):

- **2D Independent Axis Mode** - Allows the selected region to expand to exactly fit in the frame. The axes are rescaled independently to fit the zoom box.

- **2D Dependent Axis Mode** - In dependent mode, the axes are not fit perfectly to the zoom box. The longest dimension from the zoom box is applied to an associated axis, and the other axis is resized according to the dependency relation.

For paper zooming - Shift-drag the magnifying glass cursor to draw a box about the region that you want to magnify. The plot is resized so that the longest dimension of the zoom box fits into the workspace. You can fit all frames to the workspace by using "Fit All Frames to Workspace" on the **View** menu.

Clicking anywhere in your plot while the zoom tool is active will center the zoom around your click. Alternatively, Control-click centers the plot on the point that was clicked and zooms out.

Use the center mouse button and drag (or hold down the scroll wheel and drag) to interactively zoom into or out of the plot.

3D mouse - Tecplot 360 EX also supports a 3D mouse, an input device that allows zooming (and translation and rotation) of 3D plots with a touch. You do not need to activate the Zoom tool to use the 3D mouse for zooming. Simply push the mouse's cap toward or away from you to zoom. Hold the Alt key while zooming with the 3D mouse to switch the zoom method (see "Input Devices" on page 16 for details).

Avoid tilting the mouse cap, as this may induce unintended rotation.
Introduction

Translate Tool

Use the Translate tool to translate data within a frame or the paper within the workspace.

While in Translate mode, drag the cursor to move the data with respect to the frame, or Shift-drag to move the paper with respect to the workspace.

While the Translate tool is active, you can zoom your image by pressing “+” to magnify, “-” to shrink. If you are Shift-dragging to move the paper, the rescale buttons “+” and “-” will magnify or shrink the paper, as long as you have the mouse button depressed.

3D mouse - Tecplot 360 EX also supports a 3D mouse, an input device that can be used to translate 3D plots at any time with just a touch, regardless of the tool or mode selected.

- Pull the mouse's cap up or push it down to translate up or down on the screen.
- Move the mouse's cap left or right to translate left or right on the screen.

Avoid tilting or rotating the mouse when using these motions to avoid rotating the plot.

Three-dimensional Rotation

There are six 3D rotation mouse modes:

- **Spherical** - Drag the mouse horizontally to rotate about the Z-axis; drag the mouse vertically to control the tilt of the Z-axis.

- **Rollerball** - Drag the mouse in a direction to move with respect to the current orientation on the screen. In this mode, your mouse acts much like a rollerball.

- **Twist** - Drag the mouse clockwise around the image to rotate the image clockwise. Drag the mouse counterclockwise around the image to rotate the image counterclockwise.

- **X-axis** - Drag the mouse to rotate the image about the X-axis.

- **Y-axis** - Drag the mouse to rotate the image about the Y-axis.

- **Z-axis** - Drag the mouse to rotate the image about the Z-axis.
Once you have selected a rotation mouse mode, you can quickly switch to any of the others using the following keyboard shortcuts:

<table>
<thead>
<tr>
<th>Shortcuts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drag</td>
<td>Rotate about the defined rotation origin with your current Rotate tool.</td>
</tr>
<tr>
<td>Alt-drag</td>
<td>Rotate about the viewer position using your current Rotate tool.</td>
</tr>
<tr>
<td>Middle-click-and-drag/Alt-right</td>
<td>Smooth zoom in and out of the data.</td>
</tr>
<tr>
<td>click-and-drag</td>
<td>Translate the data.</td>
</tr>
<tr>
<td>Control-right-click-and-drag or</td>
<td>This option can be used without first selecting a rotation mouse mode. Simply</td>
</tr>
<tr>
<td>Command-right-click-and-drag (Mac)</td>
<td>hover over your intended point of origin, and then Control-right-click-and-</td>
</tr>
<tr>
<td></td>
<td>drag to translate the image.</td>
</tr>
</tbody>
</table>

3D mouse - Tecplot 360 EX also supports a 3D mouse, an input device that can be used to rotate 3D plots at any time regardless of the tool or mode selected. The axis of rotation is relative to the screen rather than to the data.

- Tilt the mouse's cap forward or backward to rotate around the screen's X axis, as if rolling toward or away from you.
- Twist the mouse's cap clockwise or counterclockwise to rotate around the screen's Y axis, as if on a lazy susan.
- Tilt the mouse's cap left or right to rotate around the screen's Z axis, like the hands of a clock.

Slice Tool

Use the Slicing tool to control your slice(s) interactively.

The following keyboard/mouse options are available when the Slice tool is active:

<table>
<thead>
<tr>
<th>Key(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Primary Slices, Start End Slices Active - Turn on intermediate slices (if not already active) and adds a slice.</td>
</tr>
<tr>
<td>-</td>
<td>Primary Slices, Start End Slices Active - Removes start and end slices.</td>
</tr>
<tr>
<td>Click/Drag</td>
<td>Updates the position of the primary slice (if active). If only start and end slices are visible, click updates the position of the starting slice.</td>
</tr>
<tr>
<td>Alt-click/Alt-drag</td>
<td>Determine the XYZ-location by ignoring zones and looking only at derived volume objects (streamtraces, slices, iso-surfaces).</td>
</tr>
<tr>
<td>Shift-click</td>
<td>Switches from one Primary slice to Start/End Slices by adding a slice.</td>
</tr>
<tr>
<td>Shift-drag</td>
<td>Move the start or end slice (whichever is closest to the initial click location). Show Start/End Slices is activated, if necessary.</td>
</tr>
<tr>
<td>I, J, K (ordered zones only)</td>
<td>Switch to slicing constant I, J, or K-planes respectively.</td>
</tr>
<tr>
<td>X, Y, Z</td>
<td>Switch to slicing constant X, Y, or Z-planes respectively.</td>
</tr>
<tr>
<td>1-8</td>
<td>Numbers one through eight switch to the corresponding slice group.</td>
</tr>
</tbody>
</table>
Introduction

Add Streamtrace

Select the Add Streamtrace tool to add a streamtrace interactively by clicking anywhere in your plot. Select the number of streamtraces to include with each click (rake) using 1-9 on the keyboard.

Keyboard Shortcuts

- D - Switch to streamrods
- R - Switch to streamribbons
- S - Switch to surface lines
- V - Switch to volume lines
- 1-9 - Change the number of streamtraces to be added when placing a rake of streamtraces
- Shift - Draws a rake on concave 3D volume surfaces. These rakes are normally not drawn, as they occur outside of the data

Refer to Chapter 15: "Streamtraces" for more information.

Streamtrace Termination Line

Select the Add Streamtrace Termination Line tool to add a streamtrace termination line interactively.

To draw a Streamtrace Termination Line:

- Move the cursor into the data region.
- Click once at the desired starting point for the line.
- Click again at each desired break point.
- When the polyline is complete, double-click on the last point of the polyline, or press ESC on your keyboard.
- The drawn polyline ends any streamtraces that pass through it.

Add Contour Level

Select the Add Contour Level tool to add a contour level by clicking anywhere in the active data region. A new contour level, passing through the specified location, is calculated and drawn.

The following keyboard and mouse shortcuts are related to the Add Contour Level tool.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt-click</td>
<td>Place a contour line by probing on a streamtrace, slice, or iso-surface.</td>
</tr>
<tr>
<td>Click</td>
<td>Place a contour line.</td>
</tr>
<tr>
<td>Control-Click</td>
<td>Replace the nearest contour line with a new line.</td>
</tr>
<tr>
<td>Drag</td>
<td>Move the new contour line.</td>
</tr>
<tr>
<td>-</td>
<td>Switch to the Delete Contour Level tool.</td>
</tr>
</tbody>
</table>
Interface

Delete Contour Level
Select the Delete Contour Level tool to delete a contour level by clicking anywhere in the active data region. The contour line nearest the specified location is deleted.

Use the "+" key to switch to the Add Contour Level tool and the "-" key to switch back to the Delete Contour Level tool.

Add Contour Labels
Select the Add Contour Label tool to switch to the Contour Label mode, enabling you to add a contour label by clicking anywhere in the active data region.
A contour label is added to the plot at the specified location; its level or value information is taken from the nearest contour line. This allows you to place labels at a slight offset from the lines they label.

The Contour type must be lines or lines and flood in order for this tool to be active. You can set the contour type on the Contour page of the Zone Style dialog.

Probe Tool
Select the Probe At Tool to probe for values of the dataset's variables at a particular point.
To obtain interpolated values of the dataset variables at the specified location, click at any point in the data region.
To obtain exact values for the data point nearest the specified location, Control-click at the desired location.

For XY plots, when you move into the axis grid area, the cursor cross hair is augmented by a vertical or horizontal line, depending on whether you are probing along the X-axis or the Y-axis. You can change the axis to probe simply by pressing X to probe the X-axis or Y to probe the Y-axis.

Specify Equations
Opens the Specify Equations dialog. See Section 20 - 1 “Data Alteration through Equations”.

Insert Text
Select the Add Text tool to add text to any frame.
When this tool is in use, the Snap To buttons in the Plot sidebar become available to allow you to easily align your text with features of your plot.

Insert Image/Georeferenced Image
Select the Insert Image tool to insert an image or Georeferenced image to the plot.
See Image and Georeferenced Images for more information.
Introduction

Insert Geometries

Use the geometry buttons to insert geometries into your plot. When these tools are in use, the Snap To buttons in the Plot sidebar become available to allow you to easily align your geometry with features of your plot.

- Polylines
- Squares
- Rectangles
- Circle
- Ellipse

Create New Frame

Select the Create Frame tool to create a new frame.

To add a frame:
- Click once in the workspace to anchor one corner of the frame.
- Drag the diagonal corner until the frame is the desired size and shape.

If you have data loaded before you create a new frame, you can attach the existing dataset to the new frame by changing the plot type.

1 - 3.5 **Status Line**

The status line appears along the bottom of the Tecplot 360 EX window to provide a progress bar and other information when Tecplot 360 EX computes lengthy calculations. Other “hints,” such as coordinates and tips for using the currently-selected tool, also appear here.

1 - 3.6 **Tecplot 360 EX Workspace**

In the Tecplot 360 EX workspace, you can create sketches and plots. You create each sketch or plot within a frame. Each visible measure of the workspace is called a page. The current state of the workspace, including the sizing and positioning of frames, the number and contents of pages, the location of the data files used by each frame, and all current attributes for all frames, makes up a layout. By default, the workspace displays a representation of where the paper plots are drawn, as well as a reference grid and rulers. The frame most recently selected is called the active frame.

You can include multiple pages in your layout, each of which can contain multiple frames. Use the Pages Sidebar (open it from the View menu if it’s not visible) to create and manage pages.

1 - 4 **Getting Help**

Tecplot 360 EX features a fully integrated Help system. Detailed help is accessible by:
- Selecting “Tecplot 360 EX Help” from the Help menu.
- Clicking the Help button in any dialog.
The Help dialog supports text search, has hypertext links, and provides detailed information on all menus and dialogs.

You may also send an e-mail to support@tecplot.com with your questions.
Introduction
Using the Workspace

This chapter discusses the structures and features of Tecplot 360 EX that act the same regardless of the data type or plot layers you are using. These include:

- **Data Hierarchy** - How Tecplot 360 EX manages data
- **Interface Coordinate Systems** - Tecplot 360 EX’s use of different coordinate systems, and when and where they occur
- **Frames** - Areas in the workspace in which you can create plots and control formatting
- **Workspace Management Options** - Factors that determine the color and orientation of your paper, as well as the ruler and grid, in order to precisely size and position objects. For in-depth information on Display Performance, refer to Section 30-3 “Performance Dialog”
- **View Modification** - The commands to zoom, translate, and fit plots within frames
- **Edit Menu** - The commands to cut, copy, and paste plot elements in the workspace

2 - 1 Data Hierarchy

Tecplot 360 EX structures data in two levels: datasets, which display in frames, and zones, which make up a dataset. Each dataset is composed of one or more zones, and each zone contains one or more variables. All zones within a dataset contain the same set of variables.
Using the Workspace

This chart, Figure 2-1, displays a visual representation of Tecplot 360 EX’s data hierarchy.

![Diagram of data hierarchy in Tecplot 360 EX](image)

Figure 2-1. Data Hierarchy in Tecplot 360 EX. Frames 1 & 2 display Dataset 1, and Dataset 1 contains three zones from one data file. Frame 3 contains Dataset 2, which is composed of five zones (two from data file 2 and three from data file 3).

2 - 1.1 Data Displays in Frames

Tecplot 360 EX always displays data in a window called a “frame”. By default, Tecplot 360 EX opens one frame when you launch Tecplot 360 EX or open a new layout, but you can display multiple plots concurrently in Tecplot 360 EX by adding additional frames. You can add frames to the workspace using the Frame menu. You can display one dataset in one frame, or you can share one dataset between multiple frames. Using the same dataset in multiple frames allows you to generate different plots of the same data. To learn more about working with frames, go to Section 2 - 3 “Frames”.

Frames appear on pages. You can manage multiple pages in Tecplot 360 EX using the Pages Sidebar and macro commands in the default Quick Macro Panel. Each page has its own collection of frames.

2 - 1.2 A Dataset Includes All Data in a Frame

A dataset is defined as “all of the data in a frame”. To create a dataset, load one or more data files into an empty frame in Tecplot 360 EX, or create a zone in a frame.

2 - 1.3 Datasets Are Made of Zones

A zone represents a subset of a dataset. A dataset can be composed of a single zone or several zones. Zones are either defined in a data file or created directly in Tecplot 360 EX. The number of zones in a dataset is the sum of the number of zones in each of the data files included in the dataset, plus any zones created within Tecplot 360 EX.

Typically, a data file is divided into zones based on its physical coordinates. For example, a dataset of an airplane may consist of a zone for each wing, each wheel, the nose, etc. Alternatively, zones may be
defined based on the material. For example, a dataset of a fluid tank may have a zone for the tank itself and additional zones for each fluid inside the tank.

All zones in a given dataset must have the same variables defined for each data point.

2 - 2 Interface Coordinate Systems

Tecplot 360 EX incorporates a number of coordinate systems, including the paper, frame, and the physical coordinate systems for the plot (2D, 3D, XY, or Polar). The origins of each coordinate system and their relationship to one another is shown in Figure 2-2.

Figure 2-2. Tecplot 360 EX Coordinate System. The physical coordinate system(s) of the dataset (for example, 3D Cartesian or 2D Cartesian) are encompassed in the Frame Coordinate System.

The physical coordinate system (2D or 3D) depends on the plot type of the active frame. Two-dimensional physical coordinates are often referred to as grid coordinates. The Grid coordinate system is aligned with the coordinate system used by the plot axes; the Frame coordinate system is fixed to the frame and does not change when the plot is zoomed, translated, or rotated.

In 2D Cartesian plots, objects such as text labels and geometries are drawn in either the Frame or the Grid coordinate system. In 3D Cartesian plots, these objects are drawn in either the Frame coordinate system, or in what is known as the Eye coordinate system. The eye coordinate system is aligned with the Grid coordinate system; so objects drawn in the Eye coordinate system move with the data as you zoom and translate, but remain fixed when you rotate the plot.
Using the Workspace

Figure 2-3 shows a 3D volume plot with streamribbons and a streamtrace termination line. This figure illustrates how the termination points vary as the plot is rotated. Notice that the termination line itself remains in place on the screen as the plot is rotated.

Figure 2-3. Rotating Volume streamtraces with a termination line in the eye coordinate system.

2 - 3 Frames

All plots and sketches are displayed within frames. Initially, the Tecplot 360 EX workspace contains one frame. You may add additional frames, resize and reposition frames, modify background color, and specify border and header appearance. Tecplot 360 EX acts upon only one frame, the Active Frame, at any given time (however, frames may be linked, so that changing one may also change others). The active frame displays with a darker, thicker border than the inactive frames so that you can easily see which frame is active.

Tecplot 360 EX uses the height of the frame for objects scaled by frame units, such as font size. When you enter a frame unit value into a dialog or when you set frame size and position on the paper, you may specify a different unit system (inches, points, centimeters, or pixels). Tecplot 360 EX automatically converts the values into frame units.

2 - 3.1 The Active Frame

The active frame, indicated by default with a darker and thicker border, is the frame in your workspace affected by all operations you do in Tecplot 360 EX. To make a frame the active frame, click anywhere inside that frame with the Selector tool (or any other tool except the Create New Frame tool). Reference the following sections for additional actions you can perform on frames.

2 - 3.2 Frame Creation

To create a new frame, which you can use to display a new dataset or another view of an already-loaded data set, select the New Frame button in the toolbar. Or select “Create New Frame” from the Frame menu. Selecting either the New Frame tool or “Create New Frame” in the Frame menu will change your selector tool into a small “+” symbol. Click with this tool in your workspace where you want one corner of
Frames

your new frame, and drag across the workspace to where you would like the opposite corner of your new frame.

Tecplot 360 EX automatically makes the new frame the active frame.

For optimal printing of your plot(s), draw frames that sit completely within the paper displayed in the workspace. See Section 3.3.3 “Create Multiple Frames” for information on simultaneously creating multiple frames.

Data Set Inheritance

After creating a new frame, you can assign the frame to share the dataset of another frame by changing the frame order and the plot type of the new frame. When you switch a frame without data out of Sketch plot type, Tecplot 360 EX searches for another frame with which to share data. It performs this search in the order that the frames are drawn on-screen, starting from the top and moving down. The empty frame will inherit data from the first frame in the draw order that contains data.

2 - 3.3 Edit Active Frame

The Edit Active Frame dialog (accessed from the Frame menu) allows you to adjust the dimensions and style of your active frame. When you are working with multiple frames, select a frame with your selector tool to make that frame active. Then select “Edit Active Frame” from the Frame menu to adjust the position and properties of that frame.

Frame Dimensions

You can size and position a frame using your mouse, the keyboard, or a dialog. To use only your mouse, select the frame to activate the resizing handles (black boxes on the edges and corners of the frame). Click and drag on a handle to resize a frame, or click and drag on an edge in a location without a handle to change the frame location. To specify size or position with a dialog, select “Edit Active Frame” from the Frame menu.
Using the Workspace

In the Edit Active Frame dialog, you may specify the exact location for the frame's left and top sides, along with width and height.

- **Left Side** - Left edge of the frame, relative to the workspace
- **Top Side** - Top edge of the frame, relative to the workspace
- **Width** - Width of the frame (coordinates are: left side to left side + width).
- **Height** - Height of the frame (coordinates are: top side to top side - height).

The units in the Frame Dimensions region of the dialog are based on the units set for the Ruler Spacing in Options>Ruler/Grid.

You may also use the mouse or the arrow keys to resize and position frames. Click anywhere on a frame's header or border to activate resizing handles for the frame. To scale frames proportionally (maintaining the vertical to horizontal aspect ratio) select the frames, then press "+" on your keyboard to enlarge or "-" to reduce.

After selecting frames, you may position them using the arrow keys on your keyboard. You can move frames up, down, left, or right in one-pixel increments for precise location.

Frame Border and Header Controls

Use the Edit Active Frame dialog (accessed from the Frame menu) to adjust the frame border or header.

Toggling-off "Show Border" makes the frame border invisible. Use the Thickness box in the Edit Active Frame dialog to adjust the line thickness of the border.

Remember that Tecplot 360 EX uses a thicker border to indicate The Active Frame, so making borders thicker can make it become more difficult to determine which frame is active.

The frame header displays when both "Show Border" and "Show Header" are toggled-on. If you turn off the border by toggling-off "Show Border", the header turns off as well.

The frame header contains user-configurable information which defaults to:

```
"&(FrameName) | &(date) | &(DataSetTitle)"
```

where FrameName is the frame's name, date is the date the frame was created or revised, and DataSetTitle is the title of the active dataset. You can change these defaults in your configuration file using the $GLOBALFRAME command (see the Scripting Guide).

To fit the active frame to the entire printable region of US letter-size paper (landscape orientation), set Left Side=0.127, Top Side=0.125, Width=10.75, and Height=8.25. Or, set Width=8.25 and Height=10.75 for portrait orientation.

You may also use the mouse or the arrow keys to resize and position frames. Click anywhere on a frame's header or border to activate resizing handles for the frame. To scale frames proportionally (maintaining the vertical to horizontal aspect ratio) select the frames, then press "+" on your keyboard to enlarge or "-" to reduce.
Frames

Frame Background Color Modification
Select the Color box in the Edit Active Frame dialog (accessed from the Frame menu) to adjust the frame background color. Toggle-off “Show Background” to set the frame background to transparent.

Frame Name Modification
Enter text in the Frame Name region of the Edit Active Frame dialog (accessed from the Frame menu) to change the name of the active frame. The text entered here is displayed as the name of the frame.

2 - 3.4 Frame Linking
The Set Links for Active Frame dialog, accessible through Frame>Frame Linking, allows you to link specific style attributes either between frames or within a frame. Linking between frames, on the Between Frames page of the dialog, allows you to quickly make changes in one frame and propagate them to a number of other frames. Linking within frames, on the Within Frame page, links attributes between similar objects within a frame.

Attribute Linking Between Frames
Use the Between Frames page of the Set Links for Active Frame dialog (accessed from Frame>Frame Linking) to link the following attributes (shown below):

- Frame Size and Position - Use this option to overlay transparent frames. (See “Frame Background Color Modification” on page 41.)
- Solution Time - All frames display the same solution time.
Using the Workspace

- **X Axis Range, Y Axis Range** (For XY Line and 2D plots) - Links the X-Axis or Y-Axis range and the positioning of the left and right sides of the viewport.

 For XY Line plots, axis range linking applies only to the first axes, X1 and/or Y1.

- **XY Axis Position** (For XY Line and 2D plots) - Links the positioning of the X and Y-Axes between frames, including the method used for positioning the axes, such as aligning with an opposing axis value.

- **Polar Plot View** - Link views for frames using the Polar Line plot type.

- **3D Plot View** - Link the 3D axes and 3D view.

- **Slice Positions** - Link slice positions and slice planes for active slices (not slice style).

- **Iso-Surface Locations** - Link iso-surface values (but not iso-surface plot style).

- **Contour Levels** - Link the values and number of contour levels for 2D and 3D plots.

- **Value Blanking Constraints** - Link all value-blanking attributes.

It is not necessary to close and reopen the dialog between frames. Simply select another frame with the dialog open to edit linking for the newly active frame.

Frame Linking Groups

You can segregate frames into groups so that only frames in that group receive changes made in the linked attributes. By default, all frames are added to **Group 1**. Add a frame to a group by selecting the appropriate group number from the "Frame is a Member of" drop-down menu on the Between Frames page of the **Set Links for Active Frame** dialog. You can assign frames to groups 1-20. New frames added to a group take on the characteristics of previous members of the group.

![Figure 2-4. Five frames in two groups with different linking options.](image)

Propagating Between-Frame Link Attributes to Other Frames

Once link attributes are set in a frame group, you must set these same attributes in other frames for linking to occur. Each frame may have each of the attributes selected or not linked. If you want all or a selected
group of frames to have the same link attributes, select the appropriate [Apply Settings to...] button to quickly propagate the link settings. Alternatively, you can select each frame individually, making the same selections on the Set Links for Active Frame dialog for each chosen frame.

When 2D or XY Line frames have dependent axes and these axis ranges are linked, a “best-fit” attempt is made to match the axis ranges between frames. Misalignments can occur when the aspect ratios for the lengths of the axes is not the same between two frames with linked X and Y-axes. Setting the X and Y-axes to be independent allows a precise match.

Attribute Linking Within A Frame

The Within Frame page of the Set Links for Active Frame dialog (shown below) allows you to link the following attributes:

- **Axis Style** - Link activation, colors, line styles, and font styles for objects associated with axes.
- **Gridline Style** - Link activation, colors, and line styles for gridlines.
- **Zone/Map Color between Plot Layers** - Link the color of meshes, contour lines, and other zone layers for Cartesian plots, or link the color of lines, symbols, and other map layers for line plots.
- **Zone Line Pattern between Plot Layers** - Link line pattern style and length for meshes, vector, and contour lines for Cartesian plots.

Settings changed on this dialog take effect immediately. You may also apply the settings to all frames or just to selected frames using the buttons in the dialog.

Keep in mind that within-frame Linking only links attributes between similar objects within a frame. These attributes are not linked to other frames. The [Apply Settings] buttons turn on the same Within-Frame Linking properties in other frames.
Using the Workspace

2 - 3.5 Frame Deletion
Delete a frame by selecting the frame and then choosing Edit>Delete or pressing the Delete key. This action is not undoable.

2 - 3.6 Managing Frame Order
Frames can overlap, and when they do, one is drawn in front of the other. You can think of the frames as a stack of papers pinned to a bulletin board. The order of frames can be managed by right-clicking a frame name in the Frames sidebar and choosing one of the following options.

- **Bring Forward** - To move a frame one step closer to the front of the frame stack, right-click its name and choose “Bring Forward” from the context menu.
- **Send Backward** - To move a frame to one step closer to the back of the frame stack, right-click its name and choose “Send Backward” from the context menu.
- **Bring to Front** - To move a frame to the front of the frame drawing order, right-click its name and choose “Bring to Front” from the context menu. That frame will then appear in front of all other frames.
- **Send to Back** - To move a frame to the bottom of the frame drawing order, right-click its name and choose “Send to Back” from the context menu. That frame will then appear behind all other frames.

The context menu in the Frames sidebar also contains an option to Activate the selected frame. This does not change the drawing order of the frame, but does make it the Active Frame.

2 - 3.7 Save Frame Style
You can save a frame's style for later use or to share with another frame by selecting “Save Frame Style” in the Frame menu. This will open the Save Style dialog, in which you can name and save the style of your active frame as a stylesheet (with the extension .sty). Use the Load Frame Style action to retrieve your frame style in another frame or layout.

The following data is saved:
- All plot style information
- Text elements
- Geometries (shapes such as boxes, circles, and polylines)
- Stream positions
- Contour levels

2 - 3.8 Load Frame Style
To load a saved frame style into your active frame, select “Load Frame Style” in the Frame menu. With the Load Frame Style dialog that appears, you can load a frame style saved from another frame (with the extension .sty) to dictate the frame attributes of your active frame. This will affect only the Active Frame. To save a frame style, use the Save Frame Style function.

The following data is retrieved from the file and applied to the current frame:

44
Workspace Management Options

- All plot style information
- Text elements
- Geometries (shapes such as boxes, circles, and polylines)
- Stream positions
- Contour levels

2 - 4 Workspace Management Options

The workspace is the region in which you can create frames. The paper layout is a subset of the workspace and is correlated to the printer settings.

The paper is hidden by default in Tecplot 360 EX. Select "Show Paper on Screen" in the Paper Setup dialog under the File menu to include the paper.

2 - 4.1 Paper Setup

Tecplot 360 EX’s representation of paper in the workspace allows you to lay out plots precisely the way you want them printed. If you place a frame on the paper and print the resulting plot, the frame appears in the exact relative location on the printed paper.

You can control the size, orientation, and color of your paper by going to File>Paper Setup.

Paper Size Controls

Tecplot 360 EX offers the following six paper sizes:
- **Letter** - Standard U.S. letter size, 8 1/2 by 11 inches.
- **Double** - Standard U.S. ledger size, 11 by 17 inches.
- **A4** - Standard European letter size, 21 by 29.7 centimeters.
- **A3** - Standard European size, 29.7 by 42 centimeters.
- **Custom 1** - Default is 8.5 by 14 inches.
- **Custom 2** - Default is 8 by 10 inches.
Using the Workspace

All paper sizes may be customized using options in configuration or macro files. It is recommended that you only change the dimensions of the Custom 1 and Custom 2 paper sizes. To change the Custom sizes see the $!PAPER command in the Scripting Guide.

Paper Orientation Controls

Layouts can be landscape or portrait. In landscape (the default), the long axis of the paper is horizontal, while in portrait, the long axis is vertical. Portrait orientation uses the width of the specified paper for the horizontal dimension, while landscape uses this for the vertical dimension. You specify the orientation as part of paper set-up.

Screen Paper Controls

If you are creating plots for display on your screen, you can toggle-off the screen representation of the paper and use the full workspace by deselecting “Show Paper on Screen”.

Dimensions (display only)

The units displayed in the “Dimensions” region of the Paper Setup dialog are determined by the units established in Options>Ruler/Grid.

Paper Color Controls

You can set up your paper to show any color as a background color (the “paper fill color”) on your screen, as well as use that color when printing to a color printer. When you are printing, the paper can be flooded with your specified fill color. (By default, the paper fill color is ignored during printing.) To use the paper fill color when printing, select “Use Paper Fill Color when Printing” from the Paper Setup dialog.

2 - 4.2 Grid and Ruler Set-Up

The workspace grid provides a convenient guide for placing objects on your paper. When placing text or geometric shapes, you can choose to snap the anchor points of the shapes to the grid. Rulers provide a reference length for sizing objects.

To customize the ruler/grid settings, select “Ruler/Grid” from the Options menu.

Workspace Grid Controls

Tecplot 360 EX allows you to select grid spacing from several pre-set sizes in centimeters (cm), inches (in), or points (pt) with the Grid Spacing drop-down menu. You can also specify not to show the grid by toggling-off “Show Grid”.

The grid does not display if “Show Paper on Screen” or “Show Grid” are toggled-off.

Workspace Ruler Controls

You can select the ruler markings from several pre-set sizes in centimeters (cm), inches (in), or points (pt) with the Ruler Spacing drop-down menu. You can also specify not to show the ruler by toggling-off “Show Ruler”. With “Show Ruler” toggled-on, rulers appear on the bottom and right-hand sides of the workspace.
2 - 5 View Modification

Use the View menu to adjust the view of the active frame, sidebars, or toolbars, or to adjust the view of the entire workspace. The View menu is discussed in the following subsections.

2 - 5.1 Show a Sidebar or Toolbar

You may close a sidebar by clicking its close box. Once closed, you may reopen it by choosing the desired sidebar from the appropriate menu.

<table>
<thead>
<tr>
<th>Sidebar</th>
<th>Menu Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot</td>
<td>View>Plot sidebar</td>
</tr>
<tr>
<td>Pages</td>
<td>View>Pages sidebar</td>
</tr>
<tr>
<td>Frames</td>
<td>View>Frames sidebar</td>
</tr>
<tr>
<td>Quick Macro Panel</td>
<td>Scripting>Quick Macros</td>
</tr>
</tbody>
</table>

You may also show or hide a sidebar or a toolbar by right-clicking any toolbar (or the menu bar) and choosing the toolbar or sidebar you wish to show or hide from the context menu.

2 - 5.2 Redraw Frame

When “Auto Redraw” is toggled-off, click the Redraw button in the Plot sidebar to redraw the active frame.

2 - 5.3 Zoom

There are two zoom modes: axis (dataset) zooming and paper zooming. To use either, first activate the Zoom tool from the Toolbar.

Plot Zooming

With the Zoom tool selected, drag the magnifying glass cursor to draw a box. The region within the view box will be resized to fit into the frame according to the longest dimension of the view box. If “Snap to Grid” is selected (on the Plot sidebar), you cannot make the zoom box larger than the grid area.

To return to the previous view, select “Last” (CTRL-L) from the View menu or “Undo” (CTRL-Z) from the Edit menu.

3D mouse - Tecplot 360 EX also supports a 3D mouse, an input device that allows zooming (and translation and rotation) of 3D plots with a touch. You do not need to activate the Zoom tool to use the 3D mouse for zooming. Simply push the mouse's cap toward or away from you to zoom.

Hold the Alt key while zooming with the 3D mouse to switch the zoom method (see “Input Devices” on page 16 for details).

Avoid tilting the mouse cap, as this may induce unintended rotation. Hold down the Alt key to switch between zooming by moving the data and by moving the viewer.
Using the Workspace

Paper Zooming

With the Zoom tool selected, SHIFT-drag the magnifying glass cursor to draw a box about the region that you want to magnify. The plot is resized such that the longest dimension of the zoom box fits into the workspace.

You can fit all frames to the workspace by using the "Fit All Frames to Workspace" option of the View menu.

Mouse Zoom and Translation

The middle and right mouse buttons allow you to smoothly zoom and translate your plot. The middle mouse button zooms smoothly, and the right mouse button translates (moves).

3D mouse - Tecplot 360 EX also supports a 3D mouse, an input device that can be used to zoom and translate 3D plots at any time regardless of the tool or mode selected.

- Push the mouse's cap toward or away from you to zoom. Hold the Alt key while zooming with the 3D mouse to switch the zoom method (see “Input Devices” on page 16 for details).
- Pull the mouse's cap up or push it down to translate vertically.
- Move the mouse's cap left or right to translate horizontally.

Avoid tilting or rotating the mouse when using these motions to avoid rotating the plot.

2 - 5.4 Fit Everything

View>Fit Everything (Control-E) resizes 3D Cartesian plots so that all data points, and all text and geometries positioned using grid coordinates, are included in the frame. By default, geometries use grid coordinates, while text objects use frame coordinates, so typically this means that Fit Everything fits geometries but not text objects, although if a text object has been set to use grid coordinates, it will be included. Use View>Data Fit to consider only data in the resizing.

Long text strings may still extend out of the frame even if positioned using grid coordinates.

2 - 5.5 Fit Surfaces

View>Fit Surfaces (Control-F) resizes 3D Cartesian plots so that all surfaces are included in the frame, excluding any volume zones. If there are no surfaces plotted, View>Fit Surfaces fits all data points, text, and geometries into the frame.

2 - 5.6 Fit to Full Size

View>Fit to Full Size (Control-F) resizes non-3D plots so that all zones or lines, geometries, and text fit within the frame.

2 - 5.7 Data Fit

View>Data Fit resizes the plot so all data points are included in the frame. Text and geometries are not considered. The text and geometries must be set to grid coordinates to be considered in the resizing.
2 - 5.8 Fit All Frames to Workspace

View>Fit All Frames to Workspace (Control-Shift-A) resizes all frames proportionally so the frame(s) fill the workspace either vertically or horizontally.

2 - 5.9 Nice Fit to Full Size

View>Nice Fit to Full Size (Control-I) sets the axis range of 2D Cartesian, XY Line, and Sketch plot types to begin and end on major axis increments. If axes are dependent, the vertical axis length is adjusted to accommodate a major tick mark.

2 - 5.10 Make Current View Nice

View>Make Current View Nice (Control-K) modifies the range on a specified axis of 2D Cartesian, XY Line, and Sketch plots to fit the minimum and maximum of the variable assigned to that axis, then snaps the major tick marks to the ends of the axis. If axis dependency is not independent, this may affect the range on another axis.

2 - 5.11 Center

Centers the plot within the frame. Only the data is centered; text, geometry, and the 3D axes are not considered. Neither the axes nor the plot is changed in size.

2 - 5.12 Translate/Magnify

The Translate/Magnify dialog (accessed via the View menu), allows you to move and resize your plot within a frame. Translating using this dialog moves the image of your data with respect to the active frame. You can translate plots in any direction within a frame.

The following options are available in the Translate/Magnify dialog:

- **Up, Down, Left, Right** - Use the arrows to translate (move) the image.
- **Increment (%)** - Controls the step size for each arrow as a percentage of the workspace.
- **View Magnification - Factor** - Change magnification using the up and down arrows to the right of the text field, or enter a value in the text field.
- **View Magnification - Increment (%)** - The step size for each click of the arrows in the Factor field, as a percentage of the current magnification.

The Translate/Magnify tool (located in the ToolBar) allows you to translate/magnify the data within the frame or the entire workspace. Use the Shift key to translate/magnify the workspace instead of the data.
Using the Workspace

When the Translate/Magnify tool is active, type +/- on your keyboard to increase/decrease the scale of the image.

2 - 5.13 Last

View> Last (Control-L) restores the previous view. The “Last” command allows you to step backward through the resizings and repositionings of plots. Any time you change the view of a frame, either by zooming, centering, translating, or fitting the plot, the previous view is placed in a view stack. Each frame is allotted four view stacks, one for each plot type. Each view stack stores up to sixteen views, including the active view.

2 - 5.14 Rotate

Available in the 3D Cartesian plot type only; calls up the Rotate dialog for image rotation. For further information, see “Three-dimensional Rotation” on page 28.

2 - 5.15 3D View Details

Available in the 3D Cartesian plot type only; calls up the 3D View Details dialog for setting the view position and angle of 3D objects. For further information, see “Three-dimensional Rotation” on page 28.

2 - 5.16 Copy View

Use the View>Copy View menu option to copy the active frame view to the frame view buffer, where it can then be pasted to other frames having the same plot type. The copied view includes all the attributes of the view that are affected by the View menu: the amount of zoom, translation and scale, and (in 3D Cartesian plot type) the amount of rotation and perspective projection.

2 - 5.17 Paste View

View>Paste View pastes a copied view onto the active frame. When you are working with multiple frames attached to the same dataset, it is often useful to make your view changes to one frame and then propagate those changes to the other frames.

2 - 5.18 Fit All Frames to Workspace

View>Fit All Frames to Workspace resizes all frames proportionally so that all frame(s) fill the workspace either vertically or horizontally.

2 - 6 Edit Menu

You can duplicate frames, text, and geometries with the cut, copy and paste options of the Edit menu (or their keyboard equivalents, Control-X, Control-C, and Control-V). You can also cut objects from one location and paste them into another, or throw them away completely using the Delete option.

2 - 6.1 Undo

All plot and mapping style modifications can be undone. In addition, you can undo a variety of other plot alterations. As a rule, Tecplot 360 EX allows undo for reversible operations that can be restored without
significant impact on the operation’s performance. To undo an operation, select “Undo” from the Edit menu, or press Control-Z in the workspace.

Specifically, the Undo option is allowed for the following conditions:

- All zone and map style changes.
- Some (though not all) frame control operations.
- Creating new frames.
- Moving and copying line maps.
- View operations.
- Some pick operations.
- Streamtrace actions.
- The following data alterations:
 - Deleting zones and variables.
 -Renaming datasets and zones.
 - Creating rectangular or circular zones.
 - Duplication zones.
 - Processing Equations. (Except equations containing derivatives.)

Undo is unavailable for all data operations once an Undo operation has been performed on an un-allowed item. In addition, once an operation is performed that cannot be undone, the entire undo history for that frame is erased.

2 - 6.2 Cut
Edit Cut or Control-X removes the selected item from the plot and the active dataset (if applicable), and stores the removed item in the Paste buffer.

Generally, the Cut, Copy, and Paste options work only within Tecplot 360 EX. However, you can copy selected frames and text objects and paste them into other applications. See Section 25 - 5 “Clipboard Exporting to Other Applications”.

2 - 6.3 Copy
Edit Copy or Control-C stores the selected item in the Paste buffer but leaves it in your plot or the active dataset.

Generally, the Cut, Copy, and Paste options work only within Tecplot 360 EX. However, you can copy selected frames and text objects and paste them into other applications. See Section 25 - 5 “Clipboard Exporting to Other Applications”.

2 - 6.4 Paste
Use Edit Paste or Control-V to add the contents of the Paste buffer to the active plot. If the object is being copied into the same frame, the new object will be overlaid directly over the original object. Use the Selector or the Adjustor tool to move the copied item to different locations in the frame.

Pasting from the Paste buffer is allowed only between compatible frames. Attempting to copy an object into a frame that does not hold an appropriate data type results in an error message.
Using the Workspace

2 - 6.5 **Delete**
Remove the selected item from the plot and from the active dataset. Deleted items are not stored in the Paste buffer.

If you cut or clear the only Tecplot 360 EX frame in the workspace, Tecplot 360 EX automatically creates a blank frame to replace it.

2 - 6.6 **Send to Back**
Pushes the selected item to the bottom of the active draw stack. The plot is drawn on your screen from the bottom of the draw stack to the top; elements lying further down in the stack may be partially obscured by elements higher up. The following types of objects may be pushed: text, geometries, 2D or X-Y grid areas, and frames.

2 - 6.7 **Bring to Front**
Pop the selected item to the top of the active draw stack. The following types of objects may be popped: text, geometries, 2D, or X-Y grid areas, and frames.
Data Structure

Tecplot 360 EX accommodates two different types of data: Ordered Data and Finite Element Data.

- **Ordered data** is a set of points logically stored in a one-, two-, or three-dimensional array, where I, J, and K are the index values within the array. The number of data points is the product of all of the dimensions within the array.

- **Finite-element** data is arranged in two arrays, a variable array and a connectivity matrix. The variable array is a collection of points in 2D or 3D space that are connected into polygonal or polyhedral units called elements. The connections between the nodes are defined by the connectivity matrix.

Connectivity List

A connectivity list is used to define which nodes are included in each element of an ordered or cell-based finite element zone. You should know your zone type and the number of elements in each zone in order to create your connectivity list.

The number of nodes required for each element is implied by your zone type. For example, if you have a finite element quadrilateral zone, you will have four nodes defined for each element. Likewise, you must provide eight numbers for each cell in a BRICK zone, and three numbers for each element in a TRIANGLE zone. If you have a cell that has a smaller number of nodes than that required by your zone type, simply repeat a node number. For example, if you are working with a finite element quadrilateral zone and you would like to create a triangular element, simply repeat a node in the list (e.g., 1,4,5,5).
Data Structure

In the example below, the zone contains two quadrilateral elements. Therefore, the connectivity list must have eight values. The first four values define the nodes that form Element 1. Similarly, the second four values define the nodes that form Element 2.

The connectivity list for this example would appear as follows:

```
ConnList[8] = {4,5,2,1, /* nodes for Element 1 */
               5,6,3,2};      /* nodes for Element 2 */
```

It is important to provide your node list in either a clockwise or counter-clockwise order. Otherwise, your cell will twist, and the element produced will be misshapen.

Ordered Data

Ordered data is defined by one, two, or three-dimensional logical arrays, dimensioned by IMAX, JMAX, and KMAX. These arrays define the interconnections between nodes and cells. The variables can be either nodal or cell-centered. Nodal variables are stored at the nodes; cell-centered values are stored within the cells.

- One-dimensional Ordered Data (I-ordered, J-ordered, or K-ordered)

 A single dimensional array where either IMAX, JMAX or KMAX is greater than or equal to one, and the others are equal to one. For nodal data, the number of stored values is equal to IMAX * JMAX * KMAX. For cell-centered I-ordered data (where IMAX is greater than one, and JMAX and KMAX are equal to one), the number of stored values is (IMAX-1) - similarly for J-ordered and K-ordered data.

- Two-dimensional Ordered Data (IJ-ordered, JK-ordered, IK-ordered)

 A two-dimensional array where two of the three dimensions (IMAX, JMAX, KMAX) are greater than one, and the other dimension is equal to one. For nodal data, the number of stored values is equal to IMAX * JMAX * KMAX. For cell-centered IJ-ordered data (where IMAX and JMAX are greater than one, and KMAX is equal to one), the number of stored values is (IMAX-1)(JMAX-1) - similarly for JK-ordered and IK-ordered data.
Ordered Data

- Three-dimensional Ordered Data (IJK-ordered)

A three-dimensional array where all IMAX, JMAX and KMAX are each greater than one. For
nodal ordered data, the number of nodes is the product of the I, J, and K-dimensions. For
nodal data, the number of stored values is equal to IMAX * JMAX * KMAX. For cell-centered data,
the number of stored values is (IMAX-1)(JMAX-1)(KMAX-1).

Indexing Nodal Ordered Data

For nodal ordered data, the n-dimensional array of values are treated as a one dimensional array. For
example, given an IJK-ordered zone dimensioned by 10x20x30. To access the value at I=3, J=4, K=5 (one
based) you would use:

\[
\text{IMax} = 10 \\
\text{JMax} = 20 \\
\text{KMax} = 30 \\
I = 3 \\
J = 4 \\
K = 5.
\]

NodeIndex = I + (J-1)*IMax + (K-1)*IMax*JMax

Indexing Cell-centered Ordered Data

For cell-centered ordered data, the index that represents the cell center is the same as the nodal index that
represents the lowest indexed corner of the cell.

For example, the figure below shows an IJ-ordered zone dimensioned 3x4.

![Cell Index Numbers](image)

Figure 3-1. An IJ-ordered zone dimensioned 3x4. Cell index numbers are based on the point number in
the lowest corner of the cell.

To access a cell-centered value for the cell in the upper right hand corner, use the following:

\[
\text{IMax} = 3
\]
Data Structure

\[\text{CellIndex} = I + (J-1)\times IMax + (K-1)\times IMax\times JMax \]

You’ll notice that the equations are exactly the same as with nodal data. As a result there are gaps of unused values at IMax, JMax, and KMax that must be left unassigned.

The above equation is generic for 1D, 2D and 3D data. It simplifies for the lower dimensions.

One-dimensional Ordered Data (I, J, or K)

Values for XY Line plots are usually arranged in a one-dimensional array indexed by one parameter: I for I-ordered, J for J-ordered, or K for K-ordered, with the two remaining index values equal to one.

At each node, \(N \) variables (\(V_1, V_2, \ldots, V_N \)) are defined. If you arrange the data in a table where the values of the variables (\(N \) values) at a node are given in a row, and there is one row for each node, the table would appear something like that shown below.

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>...</th>
<th>VN</th>
<th>(Values at node (I = 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>V2</td>
<td>V3</td>
<td>...</td>
<td>VN</td>
<td>(Values at node (I = 2))</td>
</tr>
<tr>
<td>V1</td>
<td>V2</td>
<td>V3</td>
<td>...</td>
<td>VN</td>
<td>(Values at node (I = 3))</td>
</tr>
<tr>
<td>V1</td>
<td>V2</td>
<td>V3</td>
<td>...</td>
<td>VN</td>
<td>(Values at node (I = IMax))</td>
</tr>
</tbody>
</table>

Table 3 - 1: Table of values for I-ordered Nodal Data (typical for XY plots).

See Chapter 6: “XY and Polar Line Plots” for more information on XY plots.

IJK-ordered Data Plotting

In one or two-dimensional datasets, all data points are typically plotted. However, for IJK-ordered data you can designate which surface will be plotted by using the Surfaces page of the Zone Style dialog. You may choose to plot just outer surfaces, or you may select combinations of I, J, and K-planes to be plotted. Refer to Section 7 - 1.2 “Surfaces” for in-depth information.

Logical versus Physical Representation of Data

A family of I-lines results by connecting all of the points with the same I-index, similarly for J-lines and K-lines. For IJ-ordered data, both families of lines are plotted in a two-dimensional coordinate system resulting in a 2D mesh. When both the I and J-lines are plotted in a three-dimensional coordinate system, a
Finite Element Data

3D surface mesh plot results. An example of both meshes is shown below. As you can see, logical data points can transform into an arbitrary shape in physical space.

Figure 3-2. Left, a 2D mesh of IJ-ordered data points. Right, a 3D mesh of IJ-ordered data points.

Finite Element Data

While finite element data is usually associated with numerical analysis for modeling complex problems in 3D structures (heat transfer, fluid dynamics, and electromagnetics), it also provides an effective approach for organizing data points in or around complex geometrical shapes. For example, you may not have the same number of data points on different lines, there may be holes in the middle of the dataset, or the data points may be irregularly (randomly) positioned. For such difficult cases, you may be able to organize your data as a patchwork of elements. Each element can be independent of the other elements, so you can group your elements to fit complex boundaries and leave voids within sets of elements. The figure below shows how finite element data can be used to model a complex boundary.

Figure 3-3. This figure shows finite element data used to model a complex boundary.

Finite element data defines a set of points (nodes) and the connected elements of these points. The variables may be defined either at the nodes or at the cell (element) center. Finite element data can be divided into three types:

- **Line data** is a set of line segments defining a 2D or 3D line. Unlike I-ordered data, a single finite element line zone may consist of multiple disconnected sections. The values of the variables at each data point (node) are entered in the data file similarly to I-ordered data, where the nodes are numbered with the I-index. This data is followed by another set of data defining connections between nodes. This second section is often referred to as the
Data Structure

connectivity list. All elements are lines consisting of two nodes, specified in the connectivity list.

- **Surface data** is a set of triangular, quadrilateral, or polygonal elements defining a 2D field or a 3D surface. When using polygonal elements, the number of sides may vary from element to element. In finite element surface data, you can choose per zone to arrange your data in three-point (triangle), four-point (quadrilateral), or variable-point (polygonal) elements. The number of points per node and their arrangement are determined by the element type of the zone. If a mixture of quadrilaterals and triangles is necessary, you may repeat a node in the quadrilateral element type to create a triangle, or you may use polygonal elements.

- **Volume data** is a set of tetrahedral, brick, or polyhedral elements defining a 3D volume field. When using polyhedral elements, the number of sides may vary from element to element. Finite element volume cells may contain four points (tetrahedron), eight points (brick), or a variable number of points (polyhedral). The figure below shows the arrangement of the nodes for tetrahedral and brick elements. The connectivity arrangement for polyhedral data is governed by the method in which the polyhedral facemap data is supplied.

![Tetrahedral connectivity arrangement](image)

![Brick connectivity arrangement](image)

Figure 3-4. Connectivity arrangements for FE-volume datasets

In cell-based element types (triangular, quadrilateral, tetrahedal, or brick), points may be repeated to achieve elements containing a smaller number of points. For example, a connectivity list of "n1 n1 n1 n1 n6 n7 n8" (where n1 is repeated four times) results in a brick-based pyramid element. Any of the points could be repeated; for example, "n4 n1 n3 n3 n6 n5 n7 n7" would also be a valid way to define a pyramidal element in a brick zone.

In Tecplot 360 EX, each FE data zone must be composed exclusively of one element type. However, you may use a different data point structure for each zone within a dataset, as long as the number of variables defined at each data point is the same.

Finite Element Data Limitations

Working with finite element data has some limitations:

- XY-plots of finite element data treat the data as I-ordered; that is, the connectivity list is ignored. Only nodes are plotted, not elements, and the nodes are plotted in the order in which they appear in the data file.
- Index skipping in vector and scatter plots treats finite element data as I-ordered; the connectivity list is ignored. Nodes are skipped according to their order in the data file.

Variable Location (Cell-centered or Nodal)

Data values can be stored at the nodes or at the cell centers.
Face Neighbors

- For finite element meshes, cell-centers are the centers (centroids) of elements.
- For many types of plots, cell-centered values are interpolated to the nodes internally.

Face Neighbors

A cell is considered a neighbor if one of its faces shares all nodes in common with the selected cell, or if it is identified as a neighbor by face neighbor data in the dataset. The face numbers for cells in the various zone types are defined below.

![Figure 3-1. Examples of face neighbors for various zone types.](image)

The implicit connections between elements in a zone may be overridden, or connections between cells in adjacent zones established, by specifying face neighbor criteria in the data file. Refer to “TECFACE142” on page 35 of the Data Format Guide for additional information.
Data Structure

Working with Unorganized Datasets

Tecplot 360 EX loads unorganized data as a single I-ordered zone and displays them in XY Mode, by default. An I-ordered zone is considered irregular if it has more than one dependent variable. An I-ordered data set with one dependent variable (i.e. an XY or polar line) is not an irregular zone.

To check for irregular data, you can go to the Data Set Info dialog (accessed via the Data menu). The values assigned to: IMax, JMax, and KMax are displayed in the lower left quadrant of that dialog. If IMax is greater than 1, and JMax and KMax are equal to 1, then your data is irregular.

It is also easy to tell if you have irregular data by looking at the plot. If you are looking at irregular data with the Mesh layer turned on, the data points will be connected by lines in the order the points appear in the data set.

You can organize your data set for Tecplot 360 EX in the following ways.

- **Manually order the data file using a text editor.**
- **Use one of the Data>Interpolation options.** See Section 20 - 9 “Data Interpolation”.

Example - Unorganized Three-Dimensional Volume

To use 3D volume irregular data in field plots, you must interpolate the data onto a regular, IJK-ordered zone. To interpolate your data, perform the following steps:

1. Place your 3D volume irregular data into an I-ordered zone in a data file.
2. Read in your data file and create a 3D scatter plot.
3. From the Data menu, choose Create Zone>Rectangular. (Circular will also work.)
4. In the Create Rectangular Zone dialog, enter the I-, J-, and K-dimensions for the new zone; at a minimum, you should enter 10 for each dimension. The higher the dimensions, the finer the interpolation grid, but the longer the interpolating and plotting time.
5. Enter the minimum and maximum X, Y, and Z values for the new zone. The default values are the minimums and maximums of the current (irregular) dataset.
6. Click [Create] to create the new zone, and [Close] to dismiss the dialog.
7. From the Data menu, choose Interpolate>Inverse-Distance. Kriging may also be used.
8. In the interpolation dialog, choose the irregular data zone as the source zone, and the newly created IJK-ordered zone as the destination zone. Set any other parameters as desired (see Section 20 - 9 “Data Interpolation” for details).
9. Select the [Compute] button to perform the interpolation.

Once the interpolation is complete, you can plot the new IJK-ordered zone as any other 3D volume zone. You may plot iso-surfaces, volume streamtraces, and so forth. At this point, you may want to deactivate or delete the original irregular zone so as not to conflict with plots of the new zone.
Figure 3-2 shows an example of irregular data interpolated into an IJK-ordered zone, with iso-surfaces plotted on the resultant zone.

Figure 3-2. Irregular data interpolated into an IJK-ordered zone.
Data Structure
Part 2 Loading Your Data
Loading Data

Tecplot 360 EX can load data from files on your local machine or accessible from a network file share using modules called loaders, each of which understands data in a particular format. A number of loaders are provided with Tecplot 360 EX for commonly-used CFD and general scientific and engineering formats as well as various Tecplot formats. See “Loading Data Using a Loader” on page 66.

You can also load data from the Tecplot SZL Server, a lightweight module you can install on a remote Linux host (such as a compute cluster) to get access to your data when it is not practical to move it off the cluster to a local drive or to a network file share, and when you cannot reasonably run Tecplot 360 EX on the remote host over a remote desktop setup.

To set up the Tecplot SZL Server, see “Installing the SZL Server” in the Tecplot 360 EX Installation Guide. To open data hosted by the SZL Server, see “Loading Remote Data using the Tecplot SZL Server” on page 122.
4 - 1 Loading Data Using a Loader

Use the File>Load Data command to load a data file using the Load Data dialog, shown below.

Normally, this dialog works slightly differently on Windows and non-Windows platforms. The controls at the bottom of the dialog are different. For example, this is the lower portion of the dialog as seen on CentOS Linux.

On Windows, you can switch to this version of the Load Data dialog by choosing Options>Use Extended Load Data Dialog. Using this version of the dialog on Windows may be slower to navigate depending on your network; however, you may want to try it if you regularly load multiple data files from more than one directory.
On any platform, you may use the Load Data dialog to navigate to the file you wish to open, or simply type or paste the filename or the full pathname of the file in the File Name field.

If the file you are loading is a Tecplot-format file, you may also load it by simply dragging it from your file manager (e.g., Windows Explorer or Mac OS X Finder) into the Tecplot 360 EX workspace, bypassing the Load Data dialog entirely. You can also load data files via the macro language; refer to $!READDATASET in the Scripting Guide for details.

The Files of Type menu below the file list allows you to choose a data loader corresponding to the format of data file that you wish to load, or you may select All Files to see all the files in the directory and have Tecplot 360 EX automatically choose a loader for you if possible. When you choose a loader, the file list changes to show only files that can be loaded by that loader.

If the name of the file you are trying to load has a non-standard extension, type the extension in the File Name field like "*.foo", then press Enter to show all files having this filename extension. You may also enter "*.*" to show all files regardless of their extension, or choose All Files from the Files of Type menu to have Tecplot 360 EX try to determine which loader is needed.

- If the chosen loader needs only a single file, simply navigate to and select the file you want to load in the file list and click Open.
- If the chosen loader supports or requires loading more than one file at once, or you are choosing from All Files or All Supported Files, you may select multiple files. On Windows (using the standard version of the Load Data dialog), you can choose additional files by holding down Control or Shift while clicking the second and subsequent files in the dialog, then clicking Open.

On other platforms (or on Windows using the extended version of the Load Data dialog), the Add to List button becomes enabled. Select each file to be loaded and click Add to List to add it to the Additional Files list. You may choose files from more than one directory. You may also remove selected files from the list by clicking the Remove All or Remove Selected button. Click Open to open all the files using the loader you chose.

When using All Files or All Supported Files, all of the files should be in the same format. If the loader for that format cannot load multiple files, you must load them individually, appending the second and subsequent files.

- Some file formats are very flexible, so you may need to specify exactly how the data was written in order for Tecplot 360 EX to load it correctly. Some loaders always display an options dialog, since they are needed almost every time. Others only display an options dialog when you request it. On Windows (using the standard dialog), click the menu triangle next to the Open button and choose Open With Advanced Options instead of clicking Open after selecting your file(s). On non-Windows platforms (or when using the extended dialog on Windows), an Advanced Options checkbox becomes enabled and may be selected before clicking Open. The loader’s options dialog is then displayed before loading the selected file(s).

Available file formats include:

- CGNS Loader
- CONVERGE Out File Loader
- DEM Loader
- DXF Loader
- EnSight Loader
- Excel Loader
Loading Data

- FEA Loader
- FLOW-3D Loader
- FLUENT Loader
- PYCOM Loader
- General Text Loader
- HDF Loader
- HDF5 Loader
- Kiva Loader
- PLOT3D Loader
- PLY Loader
- Tecplot-Format Loader
- Tecplot Subzone Loader
- Tecplot Layout Loader
- Text Spreadsheet Loader
- TRIX Loader
- VTK Data Loader

Loading by Position

In most CFD data formats, it is valid to have multiple variables with the same name. When loading such a file, Tecplot 360 EX warns you that this situation exists and offers to load the variables by position: each variable will be identified by the order in which it appears in the file rather than by its name. This may make some aspects of working with the data different or more complicated.

For example, when manipulating data using equations, you must use the \texttt{V#} syntax to refer to such duplicate variables, rather than the \texttt{\{VariableName\}} syntax, as the latter cannot uniquely identify the variable. (See “Equation Variables and Values” on page 303.) Macros and Python scripts may also be affected.

When possible, we advise obtaining a data file with a unique and consistent name for each variable, for example by adjusting your solver’s configuration.

Appending or Replacing Data

You may append new data to your dataset at any time by choosing File > Load Data. You cannot append a grid file that contains only FE connectivity data without appending a solution file along with it. In addition, to append a solution file you must also append a grid file at the same time. In this case, the grid file must be loaded before the solution file.

Some loaders allow you to choose how you wish to append or replace data.
Loading and Combining Variables from Multiple Files

In Tecplot 360 EX, you can load multiple data files in two different ways:

- All at once by choosing all the files in the Load Data Files dialog.
- By appending data to the data that has already been loaded.

The Variable Load and Combine dialog appears when loading multiple data files in certain formats, whether you load the files all at once or append new data to previously-loaded data, if the names of the variables in the data files do not match. The dialog allows you tell Tecplot 360 EX which variables (if any) have the same meanings across the files, as well as which variables should not be loaded at all.

This feature works only with data in the following formats:

- Tecplot - text (.dat), binary (.plt), and subzone (.szplt)
Loading Data

- CGNS
- EnSight
- Excel
- HDF and HDF5
- Text (using the Text Spreadsheet or General Text loader)
- TRIX
- VTK

The Variable Load and Combine dialog appears only when the files you are loading do not all contain exactly the same variable names (or, when appending, if the variable names in the file being loaded do not exactly match those of the data already loaded). When all variable names match in the files being loaded, this dialog does not appear; instead, Tecplot assumes that all the variables have the same meaning in all the files.

If a file you are loading or appending has multiple variables with the same name, Tecplot 360 EX asks if you want to load them by position. See "Loading by Position" on page 68. When loading by position, you cannot combine variables (and do not need to).

The dialog allows you to indicate that variables with different names have the same meaning (referred to as combining the variables) in two different ways.

- Select variables having the same meaning, one in each list, then click Combine.
- Apply a previously-defined variable alias file that indicates which variable names have the same meaning.

The two methods can also be used together. For example, you might first apply a variable alias file that deals with the most common equivalent variables in your typical data sets, then clean up any remaining variables (uncommon variables, or variables that don’t always have a well-defined meaning) by hand.

The dialog has the following parts:

- The Available Variables list initially displays all the variables declared in the files you are loading. As you choose variables to combine or load, they move to the Variables to Load list. Any variables remaining in the Available Variables list when you click OK are not loaded.
- The Variables to Load list displays variables that are slated to be loaded in the current load operation. If you are appending data, variables that have already been loaded in previous load operations also appear here. Variables are colored according to the following rules:
 - Black - Variable is not combined; it is either already loaded, or will be loaded
 - Blue - Variable appears under the same name in multiple files and has been automatically combined
 - Green - Variable has different names in different files and has been combined by the user, either using the Combine button or by applying a variable alias file
- The Add Selected button moves a variable from the Available Variables list to the Variables to Load list, adding it to the set of variables that will be loaded in the current operation. The added variable's name appears in black. By default, variables that are unique to one file are not loaded.
- The Add All button moves all variables listed in the Available Variables list to the Variables to Load list, indicating that you want to load all of them in the current operation. The variable names appear in black.
- The Combine button combines the variable selected in the Available Variables list with the variable selected in the Variables to Load list, indicating that the variables have the same meaning.
meaning. The variable is given a name derived from both the selected variables, and this name appears in the Variables to Load list and is colored green. See Combining Variables Manually.

- The Remove button removes the selected variable from the Variables to Load list, if possible. If the variable is already part of the current data set (that is, you are appending data, and the variable is from a previous load operation), it cannot be removed.

When removing a combined variable, all the original variables that were combined are separated and moved back to the Available Variables list, again except for any which have already been loaded from a previous operation.

- The Apply button applies a variable alias file to the variables being loaded, combining variables if they are defined in the file as having the same meaning as another variable. See Creating and Using a Variable Alias File.

- Click OK to proceed with loading after setting up the variable combining the way you want it.

Variables that have the same name are automatically combined, as this is almost always what you will want to have happen. They appear in blue in the Variables to Load list. If you do not want this to happen, load the files one at a time and, before loading the file with duplicate variable names, rename the existing variables you do not want to combine with newly-loaded variables of the same name. (You can rename variables by double-clicking them in the Data Set Information dialog.)

Combining Variables Manually

To combine two variables manually, telling Tecplot 360 EX that they have the same meaning, you select the first variable in the Available Variables list and the second in the Variables to Load list, then click the Combine button. The combined variable is added to the Variables to Load list and given a name consisting of both original variable names separated by a semicolon.

If the variables to be combined are in the Available Variables list, as may be the case when loading all the files at once instead of appending, select one in the Available Variables list and click Add Selected to select it to be loaded. Then combine them as above.

If there are more than two variables that have the same meaning, combine the first two, then select the combined variable in the Variables to Load list and combine it with the next variable having the same meaning in the Available Variables list as above.

You may combine multiple sets of variables at a time. If you select more than one variable in the Available Variables list, and the same number in the Variables to Load list, clicking Combine combines the first selected variable from the Available Variables list with the first selected variable from the Variables to Load list, the second with the second, and so on.

You may not combine variables from the same file.

Creating and Using a Variable Alias File

The variable_aliases.txt file found in the Tecplot 360 EX installation directory lists sets of variables that should be considered equivalent. See Section 30-1 “Custom Files loaded on Startup” for information about how variable aliases are loaded.

The variable_aliases.txt file must begin with a #IVA 1 line to indicate that it is a variable alias file (format version 1). On subsequent lines, the # character indicates the beginning of a comment; everything following the # on a line is ignored. Variable aliases are specified by listing the equivalent names on a line separated by semicolons. For example:

```
#IVA 1
p;press;pressure  # temperature variables in Celsius
m;mach
a;alpha;aoa      # angle of attack in radians
b;beta;aos       # angle of sideslip in radians
```
Variable names found in this file are case-insensitive. Excess whitespace is ignored.

When you click Apply, Tecplot 360 EX combines variables as indicated in variable_aliases.txt. Where two or more files contain variables whose names appear on the same line, these variables are combined, and the resulting Tecplot 360 EX variable is given a name containing the original variable names (as they appear in the datasets being loaded) separated by semicolons. The new variables then appear in the Variables to Load list in the dialog.

For example, if you load two files with the variables "P" and "Pressure," and the lines shown above appear in the variable_aliases.txt file, when you click Apply, these two variables appear in the Variables to Load list as a single variable called either "P;Pressure" or "Pressure,P" depending on the order in which the files were loaded.

If multiple lines in variable_aliases.txt might apply to the data sets being loaded, these conflicts are resolved based on the order in which the files are loaded. For example, if you load three files containing variables "M," "Mach," and "Mass," in that order, and variable_aliases.txt contains lines equating "M" with "Mach" and also "M" with "Mass," the resulting data set would have a variable named "M Mach" and a second variable "Mass." Because the file containing the variable "Mach" was loaded before the file containing the variable "Mass," "M" was combined with "Mach" when that file was loaded and cannot also be combined with "Mass."

You may change the names of combined variables after loading the data by double-clicking the variable in the Data Set Information dialog (Data Set > Data Set Info).

4 - 2 All Files and All Supported Files

With All Files and All Supported Files, Tecplot 360 EX tries to automatically choose a loader based on the names of the files you select.

With All Files, you see literally all of the files in the directory you’re browsing. With All Supported Files, you see the files that Tecplot 360 EX knows it can load using any of the installed loaders, based on the files’ names, but excluding other files. Either choice allows you to load files without having to specify in advance what loader will be used.

These options are particularly useful if you regularly work with multiple data file formats, or (in the case of All Files) if your data files often have unconventional names, such as a nonstandard or absent filename extension.

If the names of the selected files unambiguously indicate a single data file format, the appropriate loader is automatically chosen and the data is loaded without further ado. If more than one loader might be able to open the files, or if the files chosen do not have names that are recognized as belonging to a particular loader, the Choose Loader dialog appears. This dialog may recommend one or more loaders in a “Suggested Loaders” section at the top of the list. Choose the loader to be used, then click OK.

All selected files must be in the same format.

4 - 3 CGNS Loader

The CGNS Loader supports files created with CGNSLib Version 3.3 or earlier with either ADF or HDF5 internal representation. You can choose to load either all or specific bases, zones, and solutions into Tecplot 360 EX zones. You can also select field variables individually, or define index ranges to load specific sub-zone blocks or planes for structured-grid zones.
The CGNS Loader dialog has the following options:

- **Files** - Click the buttons to add or remove files from the list of files to be loaded.
- **Load Preference** - Choose to load either grid and solution data, or global convergence history data. If a file contains both types of information, they must be loaded separately.
- **Specify Options** - Active when a valid file is entered or selected. This option allows you to control the data loaded from your CGNS file, including loading only particular zones, field variables, or partial zones.
- **Select Zones** - Launches the Load CGNS Options: Zones Dialog, which allows you to select specific zones and partial zones to load.
- **Select Variables** - Launches the Load CGNS Options: Variables dialog, which allows you to select specific field variables to load. Grid variables are always loaded automatically.
- **Load Cell-centered Data Directly** - Toggle-on to load cell-centered data directly [default]. When the option is toggled-off, cell-centered data will be averaged to the nodes (using the averaging method specified below).
 - **Averaging** - This option is available only if "Load Cell-centered Directly" is not selected. When the field variables are stored at cell centers, either Laplacian averaging or arithmetic averaging may be used to average the cell data to the nodes they surround. This can result in a bias at the boundary nodes. Arithmetic averaging is automatically used for ordered/structured zones. When available, Rind data is used in the averaging.
- **CGNS Section Mapping** - CGNS files sometimes have multiple node-maps (referred to as sections) for each finite element zone. A zone may contain sections with different cell types and cell dimensions.
 - **One Tecplot zone per non-poly CGNS zone/solution (default)** - All non-polytope sections with the same zone cell dimension will be combined into one zone in Tecplot 360 EX.
 - **Load each section/boundary as separate Tecplot zone** - A separate zone will be created in Tecplot 360 EX for each section or boundary regardless of cell dimension.

If "Specify Options" is not selected, every base, zone, solution, and variable is loaded into Tecplot 360 EX.
Loading Data

- **Assign Strand IDs for zones** - Toggle-on to assign Strand IDs to transient zones. Refer to Section 7-2 “Time Aware” for more information on working with transient data.
- **Uniform grid structure** - Toggle-on to use the grid from the first time step for all time steps, saving time and memory. Toggle-off if more than one grid is used.

4 - 3.1 CGNS Support Notes

The CGNS loader can load IJK-indexed, finite element, and polytope (polygonal/polyhedral) data, the latter denoted with NGON/NFACE sections in the data file. Polygonal sections may not be combined with sections of other types.

CGNS Boundary Conditions can be loaded for both structured and unstructured data with the exception that unstructured boundaries will only be loaded if they have corresponding sections.

Only CGNS bases and zones with valid grids can be read by the CGNS Loader. For unstructured grids, the CGNS Loader supports BAR_2, TRI_3, QUAD_4, TETRA_4, PYRA_5, PENTA_6, HEXA_8, MIXED element types and their combinations on every section. However, the CGNS Loader does not support higher-order element types. Unstructured sections that are cell-centered and have more cells than are declared in the CGNS Zone_t node will be ignored.

Only vertex and cell-centered field variable locations are supported. Cell-centered data can be read in directly or averaged to the nodes when the file is read. For cell-centered structured grids, arithmetic averaging is used. Rind data is used in the averaging if available. For cell-centered unstructured grids, either Laplacian averaging or arithmetic averaging can be selected to average the cell data to the surrounding nodes.

The CGNS Loader assigns strand IDs for zones by grouping them into time steps based on their solution times. The first zone from each time step is assigned to strand 1, the second to strand 2, and so on until all zones have been assigned to a strand. CGNS Base Names and Zone Names are converted to zone auxiliary data under the keys "CGNS.CGNSBase_t" and "CGNS.Zone_t," respectively.

For CGNS files with an HDF5 internal representation, Tecplot 360 EX uses HDF5 library version 1.8.17.

4- 3.2 Load CGNS Options: Zones Dialog

Zones in Tecplot 360 EX are not always equivalent to CGNS zones. The **Load CGNS Options: Zones** dialog allows you to specify zones to load from CGNS data files.

Each solution for a CGNS zone is considered a unique zone in Tecplot 360 EX. The CGNS base (B), zone (Z), and solution (S) hierarchy orders the zones. The integer preceding the word Zone is the internal zone number assigned to that zone. The integer following Zone represents the order the zone was found in the CGNS file.

Table 4-1 describes the zone description listed in the dialog box. The zone description includes the CGNS hierarchy information. "CGNS B, Z, S =" followed by three integers representing the CGNS order for the base, zone, and solution, respectively. "CGNS Z, S =" and two integers are displayed if a single base is found. The description also indicates whether the zone is ordered (structured) or finite element.
CGNS Loader

I, J, and K-dimensions are provided for ordered zones; the number of nodes and elements are provided for finite element zones.

<table>
<thead>
<tr>
<th>int</th>
<th>Zone number</th>
<th>CGNS file</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Zone”</td>
<td>x = Base number</td>
<td>“Ordered”</td>
</tr>
<tr>
<td></td>
<td>y = Zone number</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>z = Structure number</td>
<td>“FE”</td>
</tr>
</tbody>
</table>

Table 4-1: Zone Description in the Load CGNS: Zones dialog

By default, all zones are selected for reading and displayed in Zones to Load. Use the [Move], [Move All], [Remove], or [Remove All] buttons to edit the list.

CGNS Loader Options: Index Ranges Dialog

The Load CGNS: Index Ranges dialog allows you to specify a sub-set of the selected ordered/structured zone(s) to be loaded, or define a block, plane, or line of points for extraction on loading. To load a partial zone or sub-zone, highlight the zone of interest in Zones to Load region of the CGNS Loader: Zones dialog, and select the [Index Ranges for Zone(s)] button.

Each index requires Start, End, and Skip values. Start and End points are always loaded. If multiple zones are selected prior to calling up the CGNS Loader: Index Ranges dialog, “Mx” (the maximum value for each zone) is the default value for End. You may enter any value for End. However, if the value is greater than the maximum index for a zone, End is replaced by the maximum index.

For multi-dimensional zones, more than one point must be specified to load for the I and J-directions. If the inputs for Start, End, and Skip result in a single point in either direction, an error message appears.

4-3.3 Load CGNS Options: Variables dialog

The CGNS Loader: Variables dialog includes the Variables from CGNS and Variables to Load boxes.

The “Variables from CGNS” list includes all field variables in the CGNS data file, independent of their zone(s). The “Variables to Load” list contains the field variables that have been selected to be loaded into Tecplot 360 EX. Initially, both lists are the same. A variable number is assigned to each CGNS field variable that appears in the “Variables to Load” list. Because Tecplot 360 EX requires every zone to have the same number of variables, each zone that is loaded into Tecplot 360 EX will include every variable in the “Variables to Load” list (regardless of whether the zone included that field variable in the CGNS file). The variables that were not originally in the zone will be set to zero. The field variables that do not appear in the “Variables to Load” list will not have a variable number assigned to them.

Use the [Move], [Move All], [Remove], or [Remove All] buttons to edit the Variables to Load list.
4- 3.4 Macro Commands for the CGNS loader

The syntax for loading CGNS data files with the Tecplot macro language is as follows:

```plaintext
$!READDATASET
    "$STANDARDSYNTAX "1.0"
    "DATASETREADER "CGNS LOADER"
```

Each name/value pair should be in double quotes. Refer to the Scripting Guide for details on working with the Tecplot macro language.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Values</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARDSYNTAX</td>
<td>"1.0"</td>
<td>n/a</td>
<td>Must be the first instruction.</td>
</tr>
<tr>
<td>FILENAME_CGNSFILE</td>
<td>"filename"</td>
<td>n/a</td>
<td>The name of the file to load.</td>
</tr>
<tr>
<td>FILELIST_CGNSFILES</td>
<td>"filenames"</td>
<td>n/a</td>
<td>Option to load multiple files. Syntax: FILELIST_CGNSFILES n filenames where n is the number of files to be loaded and filenames is a list of CGNS files delimited by spaces.</td>
</tr>
<tr>
<td>LoaderVersion</td>
<td>"V3"</td>
<td>n/a</td>
<td>The loader version to use; V3 is current</td>
</tr>
<tr>
<td>CgnsLibraryVersion</td>
<td>"3.3.0"</td>
<td>n/a</td>
<td>The CGNS library version to use</td>
</tr>
<tr>
<td>AverageToNodes</td>
<td>"Yes"</td>
<td>"Yes"</td>
<td>Used to average the cell data to the nodes they surround.</td>
</tr>
<tr>
<td>AveragingMethod</td>
<td>"Laplacian"</td>
<td>"Arithmetic"</td>
<td>If AverageToNodes is set to ‘yes’, specify the AveragingMethod to use.</td>
</tr>
<tr>
<td>SectionLoad</td>
<td>"Combine"</td>
<td>"SeparateZones"</td>
<td>CGNS files may have multiple node-maps (or sections) for each finite element zone. If you specify ‘Combine’, all sections are combined with the zone cell-dimension into one zone. If you specify ‘SeparateZones’, a separate zone is created for each section or boundary regardless of cell dimension.</td>
</tr>
<tr>
<td>LoadBCs</td>
<td>"Yes"</td>
<td>"No"</td>
<td>Specify whether to load the boundary conditions. For unstructured data, boundary conditions will always be loaded.</td>
</tr>
<tr>
<td>AssignStrandIDs</td>
<td>"Yes"</td>
<td>"No"</td>
<td>Set to ‘yes’ to automatically assign the strand IDs to your data file.</td>
</tr>
<tr>
<td>ZoneList</td>
<td>like "Z1, Z2, Z3-Z7,..."</td>
<td>All zones</td>
<td>Specify the zone number(s) of the zone(s) you wish to load.</td>
</tr>
<tr>
<td>VarNameList</td>
<td>like "V1, V2, V3-V7,..."</td>
<td>All variables</td>
<td>Specify the variable number(s) of the variable(s) you wish to load.</td>
</tr>
<tr>
<td>JIndexRange</td>
<td>"Zn, Min, Max, Skip"</td>
<td>All</td>
<td>If you are loading a subset of zones, you may specify the index ranges for each zone. Specify the zone number, minimum, maximum, and skip value for each index. Set Zn to ‘0’ to apply the index ranges to all zones.</td>
</tr>
<tr>
<td>KIndexRange</td>
<td>"Zn, Min, Max, Skip"</td>
<td>All</td>
<td></td>
</tr>
</tbody>
</table>

76
CONVERGE Out File Loader

<table>
<thead>
<tr>
<th>LoadConvergenceHistory</th>
<th>"Yes"</th>
<th>"No"</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Yes"</td>
<td>"No"</td>
<td></td>
</tr>
</tbody>
</table>

Loads global convergence history data in the CGNS file, if any, rather than grid and solution data.

<table>
<thead>
<tr>
<th>UniformGridStructure</th>
<th>"Yes"</th>
<th>"No"</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Yes"</td>
<td>"Yes"</td>
<td></td>
</tr>
</tbody>
</table>

If "Yes," the same grid is assumed for all timesteps and only the first timestep's grid is loaded. If "No," the grid is loaded for each timestep.

4 - 4 CONVERGE Out File Loader

Use this loader to load in ASCII `.out` files produced by CONVERGE. This loader does not have any Advanced Options and will load all supplied variables. If CONVERGE `.out` files specify different "Locations" for variables then those locations will be translated into separate zones in Tecplot.

4 - 5 DEM Loader

The DEM Loader allows you to load Digital Elevation Map files that have the same file format as the U.S. Geological Survey's standard DEM format. The DEM Loader will not accept Spatial Data Transfer Standard (SDTS) formatted data.

DEM files are available on the Web for a number of states within the U.S. For more information, refer to http://www.webgis.com/terr_us1deg.html.

The DEM Loader first launches a multi-file selection dialog. After choosing one or more DEM files to load, you are presented with a simple dialog where you can set the I and J-skipping. For large DEM files, you may want to set both of these to be 10 or more.

4 - 6 DXF Loader

The DXF Loader add-on can import AutoCAD® DXF® (drawing interchange) files. When importing a file, Tecplot 360 EX creates an appropriate geometry for each of the following entity types:

- Text
- Lines
- Arcs
- Circles
- Points
- Solid
Loading Data

- 3D faces

When importing a DXF file, no zones are created. Instead, the geometries representing each entity type are simply added to the frame. Be aware that a typical DXF file can contain several thousand geometries, and these are all included when you save a layout file.

4 - 6.1 Load DXF File Dialog

The Load DXF File dialog has a variety of features. You can select any of the following:

- **Import** - Select any or all geometries to import: Text, Lines, Arcs, Circles, Points, Solids, 3D Faces.
- **Font** - Select the font to use for text. (See Section 18 - 1.2 “Font Folders and Fallback” on page 273 for more information on how fonts work with Tecplot 360 EX.)
- **Attach Imported Items to Zone** - Specify a zone to which all imported geometries will be attached. Clicking the [Select Zone] button produces a menu of zone options.
- **Polylines/Import as 2D** - All lines and polylines are stored with three coordinates in DXF files. If you select this option, the loader will add 2D line geometries for all lines and polylines in the DXF file (the third coordinate will be ignored).
- **Polylines/Import as 3D** - If you select this option, the loader will add 3D line geometries for all lines and polylines in the DXF file. To view a 3D DXF file, create or load a 3D zone, import your DXF file, then choose “Fit Everything” from the View menu.
- **Hide Invisible Layers** - If this option is checked, objects in layers that are “off” in the DXF file will be imported with the background color.

4 - 6.2 DXF Loader Limitations

The DXF Loader does not create any field data. Loading a DXF file only adds geometries to your existing frame.

Since most geometries in Tecplot 360 EX are 2D, best results will be obtained by loading “flat” DXF files, such as maps.
Binary AutoCAD® DWG™ are not supported in this release.

4 - 7 EnSight Loader

The EnSight Data Loader allows you to load EnSight Gold and EnSight 6 files of types case (.case or .encase), geometry (.geo), or variable (*.). Geometry and variable files can be in either ASCII or binary format, although binary is recommended. Files from earlier versions of EnSight need to be resaved in Gold format using File>Save>Geometric Entities. To determine what format the files are in, view the case file and look under the FORMAT section.

EnSight data is stored in a case file, which contains references to all associated geometry and variable files. Loading the case file will load all the associated files. EnSight parts are translated into zones with the caveat that unstructured parts with dissimilar element types (i.e. a volume element and a surface element) will only load the primary element type. Unstructured zone names will be prefixed by the type of zone they represent (point, line, surface, or volume). Vector, tensor, and tensor9 variables are expanded into the appropriate number of variables with the variable name followed by a suffix. Complex 'imaginary' variables will have an 'I' following the name to distinguish them from the 'real' variable.

When loading EnSight data, choose the desired case file, and the associated data files will be loaded.

4- 7.1 Macro Commands for the EnSight Loader

The syntax for loading EnSight data files with the Tecplot macro language is as follows:

```
$!READDATASET
  ' "STANDARDSYNTAX" "1.0" "FILENAME_CASEFILE" "file name"'
DATASETREADER = 'EnSight Loader'
```

Each name/value pair should be in double quotes. Refer to the Scripting Guide for details on working with the Tecplot macro language.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Available Values</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARDSYNTAX</td>
<td>1.0</td>
<td>n/a</td>
<td>Must be the first instruction.</td>
</tr>
<tr>
<td>FILENAME_CASEFILE</td>
<td>"filename"</td>
<td>n/a</td>
<td>The full or relative path of the case file name.</td>
</tr>
<tr>
<td>READDATAOPTION</td>
<td>NEW, APPEND, REPLACE</td>
<td>n/a</td>
<td>NEW to create new layout; APPEND to add to existing layout, REPLACE to replace data and retain style</td>
</tr>
</tbody>
</table>

Previous versions of the EnSight loader supported options for loading a subset of the data using IJK skipping, part selection, or variable selection. These options will not generate syntax errors, so old macros will continue to work. However, IJK skipping is ignored, and part/variable selection is supported only for EnSight 6 files.

4 - 8 Excel Loader

The Excel Loader can read numeric data from .xls files for Microsoft® Excel® version 5.0 or higher.

The Excel Loader is available for Windows platforms only.
The Excel Loader is intended primarily for users who record experimental or simulation data using Excel. Your Excel file must contain only values (no equations). We recommend the use of the Excel add-on from the Util/Excel folder as an easier method to open Excel data with Tecplot 360 EX (see Section B - 1 “Excel Add-In”). Use the Text Spreadsheet loader for delimited files (Section 4 - 22 “Text Spreadsheet Loader”). If your spreadsheet is arranged as Table Format or Carpet Format, the Excel Loader is a point-and-click operation. Once you have selected an Excel file to load, the Excel Loader leads you through a series of dialogs, prompting you to specify a variety of attributes, including the data format in the Excel spreadsheet, the variables to be read, and zone information.

Refer to Section B - 1 “Excel Add-In” for instructions on loading Excel data into Tecplot 360 EX from Excel.

4 - 8.1 Spreadsheet Data Formats

The Excel Loader will automatically identify blocks of data in Table Format or Carpet Format. The loader will list blocks of data in standard notation for Microsoft Excel. For example, a block found on worksheet sheet1, cells A1:D8, is listed as follows: (sheet1! A1:D8).

If you select a user-defined format (or if the loader did not identify any carpet or table blocks), you will be prompted to enter the names and number of variables, and one or more zones and associated properties. You will also need to enter the location of the field data in the spreadsheet for each zone.

Table Format

Use Table format for data that will be plotted in line plots (i.e. data with an independent and one or more dependent variables). Many spreadsheets containing data to be plotted in 2D or 3D Cartesian plots will also satisfy the conditions of table format.

A table formatted dataset has the following characteristics:

- The dataset is arranged in one or more adjacent columns.
- Each column is the same length.
- Each cell contains numeric data.
- The first row is a header row containing the variable name for its corresponding column.
- The spreadsheet dataset is imported as a single 1-ordered zone in POINT format with N variables, where N is the number of columns in the table.

The block of data must be surrounded by empty cells, text-filled cells, or table boundaries. The loader will not recognize a block of data as being in table format if any cell adjacent to the block contains a number. The block of data can contain no empty cells. An empty cell will prevent the loader from recognizing the block. You can satisfy this condition by filling blank cells with 0.0.
Excel Loader

Figure 4-1 shows a block of data in table format in Excel.

<table>
<thead>
<tr>
<th>(\text{Month})</th>
<th>(\text{Seattle Rainfall})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4.3</td>
</tr>
<tr>
<td>3</td>
<td>4.5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4.2</td>
</tr>
<tr>
<td>6</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>2.1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>2.1</td>
</tr>
<tr>
<td>11</td>
<td>3.5</td>
</tr>
<tr>
<td>12</td>
<td>3.3</td>
</tr>
<tr>
<td>13</td>
<td>3.5</td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Carpet Format

Use carpet format for spreadsheet data to be plotted in a 2D or 3D Cartesian plot. The carpet formatted dataset, shown in Figure 4-2, has the following characteristics:

- The spreadsheet dataset is imported as an IJ-ordered zone. See Chapter 6: “XY and Polar Line Plots”.
- In Figure 4-2, the spreadsheet is imported as \(I=4 \) and \(J=4 \). The three variables are \(X \), \(Y \), and \(V \). In the spreadsheet cell 2B is index 1, 1, cell 3B is index 2, 1.
- The top row in the block contains the values of the \(X \)-variable, the first column of the block contains the values of the \(Y \)-variable, and the \(V \)-values are the interior data. This format is useful if your dataset was generated from a function \(f \), such that \(f(X, Y) = V \).
- The block is a rectangular arrangement of numeric data in the spreadsheet, with a blank cell in the upper left hand corner.
- There must be no blank cells within the block of data. An empty cell will prevent the loader from recognizing the block. You can satisfy this condition by filling blank cells with 0.0.
Loading Data

- The block of data must be surrounded by empty cells, text-filled cells, or table boundaries. The loader will not recognize a block of data as being in carpet format if any cell adjacent to the block is filled with a number.

Figure 4-2. This carpet table shows values as a simple arithmetic function of X and Y.

Other Formats

The Other format option gives you a great deal of flexibility in loading data into Tecplot 360 EX. A series of dialogs leads you through the process of describing your data, similar to the way you would specify this information in a Tecplot-format ASCII file.

- Default format - The Excel Loader offers a semiautomatic option that requires only that you specify the upper left and lower right corners of your data block. Once you’ve specified those corners, it handles the data in the same way that Tecplot 360 EX handles an unformatted block in an ASCII file. It assumes one zone of I-ordered data in POINT format.

- Custom format - Using the Custom format option, you can specify characteristics of your dataset. Custom format has the following features:
 - It allows you to work with spreadsheets containing blank cells or text cells.
 - For XY, IJ, and IJK-ordered data, specify the boundaries of the block to load, and how many data points there are within that block (IMax, JMax, KMax).
 - For finite element data, the number of data points is implied by the number of nodes and number of elements.
 - Allows you to load blocks of cells that you delimit interactively.
 - It is the only option for loading finite element, IJK-ordered, or zone data from Excel. If you want to read data from an Excel spreadsheet into more than one zone, you must use custom format. By default, all data read is put into a single I-ordered zone.

4 - 8.2 Excel Loader Restrictions

A block of data is a rectangular group of numbers in the spreadsheet. The Excel Loader places the following restrictions on blocks:

- Carpet and table format (which the loader detects and loads automatically) are narrowly defined. All other formats must be loaded on the user-defined pathway.
- Numeric cells within each block should contain only numbers or numeric characters such as +, -, and so forth. A cell containing "X=34" is interpreted by the loader as text, because it begins with text.
- Cells containing formulas (therefore displaying calculated values) will be skipped by the loader. You can convert the formulas to values within Excel, by pasting your table using the "Paste Special" function, with "values only" selected.
- The spreadsheet file must have been written by Excel Version 5.0 or higher. For newer versions of Excel (Office 2007 and later) that save in .xls format by default, please switch to the older .xsl format when saving your file.
4 - 9 FEA Loader

Tecplot 360 EX includes the ability to load input and solution files from many popular finite element analysis (FEA) solvers. Supported formats include:

<table>
<thead>
<tr>
<th>Solver/File Format</th>
<th>File Name/Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Systems STL</td>
<td>.stl</td>
</tr>
<tr>
<td>ABAQUS Data</td>
<td>.fil</td>
</tr>
<tr>
<td>ABAQUS Input</td>
<td>.inp</td>
</tr>
<tr>
<td>ABAQUS Output Database</td>
<td>.odb</td>
</tr>
<tr>
<td>ANSYS CDWRITE Input</td>
<td>.cdb</td>
</tr>
<tr>
<td>ANSYS CFX</td>
<td>.res</td>
</tr>
<tr>
<td>ANSYS Result</td>
<td>.rst, rth, rfl</td>
</tr>
<tr>
<td>LSTC-DYNA Input</td>
<td>.dyn, .k</td>
</tr>
<tr>
<td>LSTC-DYNA Taurus State</td>
<td>.dpi, rpl</td>
</tr>
<tr>
<td>MSC/NASTRAN Bulk Data</td>
<td>.bdf</td>
</tr>
<tr>
<td>MSC/NASTRAN Output2</td>
<td>.op2</td>
</tr>
<tr>
<td>MSC/PATRAN Neutral</td>
<td>.out</td>
</tr>
<tr>
<td>OpenFOAM</td>
<td>controlDict</td>
</tr>
<tr>
<td>PTC/Mechanica Design Study</td>
<td>.neu</td>
</tr>
<tr>
<td>SDRC/IDEAS Universal</td>
<td>.unv</td>
</tr>
</tbody>
</table>

The file formats supported for each solver’s formats are:

<table>
<thead>
<tr>
<th>Solver</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Systems STL</td>
<td>all</td>
</tr>
<tr>
<td>ABAQUS</td>
<td>up to 2016</td>
</tr>
<tr>
<td>ANSYS</td>
<td>up to 14.0</td>
</tr>
<tr>
<td>ANSYS CFX</td>
<td>up to 16.2</td>
</tr>
<tr>
<td>LST-DYNA</td>
<td>up to 970.0</td>
</tr>
<tr>
<td>MSC/NASTRAN</td>
<td>up to 2010</td>
</tr>
<tr>
<td>OpenFOAM</td>
<td>2.0, including compressed files</td>
</tr>
<tr>
<td>PTC/Mechanica Wildfire</td>
<td>up to 4.0</td>
</tr>
<tr>
<td>SDRC/IDEAS NX</td>
<td>up to Series 11</td>
</tr>
</tbody>
</table>

4 - 9.1 Format-Specific Notes

ABAQUS Output Database files are supported on Windows only. Other ABAQUS formats are supported on all platforms.
Loading Data

Abaqus .odb files from older versions will be converted to the current format before being loaded through the user interface. However, this conversion will not occur automatically for files loaded with a layout file or via a macro command. To work around this, you will need to convert the older .odb file by loading it explicitly and saving the new .odb file. Then replace the file names in their layouts/macros with the new names using a text editor.

Von Mises stress data is loaded for NASTRAN data files that contain it. The FEA loader also can load both cell-centered and nodal data from NASTRAN files. This ability was added in Tecplot 360 EX 2016 R3 and may cause macros and layouts that refer to variables by number to choose the wrong variable. A warning will appear when loading such files. To address the warning, re-create the layout or macro, or else update the style settings as necessary and change the !$READDATASET instruction in the layout or macro to include the parameter "FEALoaderVersion" "436".

4 - 9.2 Loading FEA Data

FEA formats have "(FEA)" appended to the format names in the Load Data dialog. Choosing to open a selected file using the FEA loader’s advanced options displays a dialog like the one below. The dialog shown is for the ANSYS Result file format, but all formats use the same dialog (only the file format, displayed in the dialog’s title bar, differs).

- Click the Browse [...] button to change the file you wish to load. By default, it is the file you selected in the Load Data dialog.

For OpenFOAM cases, load the controlDict file in the case’s system directory. The OpenFOAM loader currently supports polyhedral and non-polyhedral data including surfaces and boundaries, parallel data, and compressed data. If a file contains transient data, this loader loads all time steps including step 0.

- Subdividing Zones - Each zone loaded from an FEA file typically represents the entire solution at a particular time step or load increment. Sometimes a solution will consist of many components that you may wish to display individually. To activate this option, choose the "Subdivide Zones" toggle and select the desired subdivision option from the menu. Tecplot 360 EX provides you with two ways to subdivide zones: by Component and by Element Type.

 - Subdividing Zones by Component - Some FEA file formats include the ability to identify components or sub-regions. If this information is available, you may direct Tecplot 360 EX to apply it by selecting the "by Component" option. Components within each solution step will be identified by sequentially numbered zone names in Tecplot 360 EX, for example, "Component 1 Step 1 Incr 1," "Component 2 Step 1 Incr 1," and so on.

 - Subdividing Zones by Element Type - If component information is not available in a solution file, the above option will produce only one component per solution step and increment. In this case, it may still be possible to achieve the desired effect if sub-regions in the solution are represented by different element types, such as shell elements and...
brick elements. Selecting "by Element Type" from the subdivision option menu creates a separate Tecplot zone for each element type present in the solution file. Tecplot zone names will then represent each element type, for example, "Quadrilaterals Step 1 Incr 1" and "Tetrahedrals Step 1 Incr 1." This makes it easy to operate on individual components or sub-regions in Tecplot 360 EX's Zone Style dialog by selecting the desired zones by name.

- Selecting Zones and Variables to Load - See Section 4 - 9.3 “Selecting Zones and Variables to Load” on page 85.

- Auto Assign Strand IDs for Zones - Regions or components of solutions throughout an unsteady solution are tracked by Strand IDs. All zones that represent a particular region or component are assigned the same Strand ID. Selecting this option directs Tecplot 360 EX to assign Strand IDs to the loaded zones. This ensures that only the zones representing the chosen solution time are displayed in Tecplot 360 EX. Zones that do not have Strand IDs assigned are displayed at all solution times. See also Section 7 - 2 “Time Aware”.

- Add Zones to Existing Strands - If you are appending data to an existing dataset, select Add Zones to Existing Strands to append the new zones to existing strands. This is appropriate where the new data represents the same regions or components as are represented in the existing dataset, such as an additional solution time level of an unsteady solution.

4 - 9.3 Selecting Zones and Variables to Load

By default, Tecplot 360 EX loads all zones and variables present in the solution file, unless multiple steps or increments are present. In this case, Tecplot 360 EX will not load step 0 increment 0 (which normally has no solution data associated with it). If you wish to load step 0 increment 0, or a subset of the available zones or variables, choose the "Select Zones and Variables" toggle in the main loader dialog. When you then click OK, the FEA Loader Options dialog will be displayed, as shown below:

Use the [Move All], [Move], [Remove], and [Remove All] buttons to add or subtract zones or variables from the list.

85
Loading Data

The Variables page is displayed above. The Zones page displays the zone list. If you elect to subdivide zones, the zones will be subdivided in the list. The figure below shows a zone list where “Subdivide Zones by Component” has been chosen:

When you have selected the zones and variables you wish to load, select [OK].

The resulting Tecplot zones for each step and increment in the file will be named accordingly in Tecplot 360 EX, beginning with Step 1 Incr 1. The precise meanings of “Step” and “Increment” are solver and problem-dependent, but normally correspond to time steps in unsteady cases, load increments in steady-state cases, or frequencies or vibrational modes in harmonic analyses.

4 - 9.4 Appending Finite Element Data to an Existing Dataset

If you wish to add a finite element solution to data you have already loaded, select “Add to current data” set in the Load Data File Warning dialog, which appears after you have selected the file and zones and/or variables to load.

Zones from the file will be added sequentially at the end of the current zone list, and new variables, if any, will be appended to the current variable list. The new zones will not be plotted initially. To plot the appended zones, select them in the Zone Style dialog, toggle on the [Zone Show] checkbox, and choose "Activate".

4 - 9.5 Post-processing Finite Element Data

When you load an FEA solution into Tecplot 360 EX, the FEA Post-processing dialog is displayed if Advanced Options checkbox is turned on in the initial Load Data dialog (unless you are appending to an
existing solution). You may re-display it at any time by selecting “FEA Post-processing” from the Tools menu.

Deforming the FEA Plot - Finite element solutions commonly include deformations calculated from applied loads. When a solution is initially read in, the un-deformed geometry is displayed. If the file contains deformation data, you can display the deformed geometry by toggling on “Deform Plots by Factor”. The deformation factor is displayed to the right of this toggle. You may enter the deformation factor in this text field, or use the up or down arrows next to it to change it. By default, the Deform Plot by Factor toggle is checked and the field is set to “1”.

Deriving New Variables from an FEA Solution - FEA solutions may consist of various types of stress and strain, or gradients of scalar quantities such as temperature. The lowest section of this dialog allows you to calculate certain other quantities of interest that may be derived from these basic solution variables. For tensor quantities such as stress and strain, the principal stresses or strains plus Von Mises stress are available. For vector quantities, the vector magnitude may be calculated. Choose the derivation you want in the Derive list, and a list of

The following formats will trigger the automatic display of the FEA Post-Processing dialog:

- ABAQUS
- ANSYS Input
- ANSYS Results
- ESI/PAM-CRASH
- LSTC/DYNA
- MSC/Nastran
- MSC/Patran
- PTC/Mechanica
- SDRC/IDEAS
Loading Data

candidate source variables in the solution will be displayed in the From list. Choose the source variable and click [Calculate] to add the desired quantity to the dataset. If Tecplot 360 EX’s Calculate-on-demand feature is active, the variable will only actually be calculated when it is displayed. In this case, you may notice no delay when you select [Calculate], but some delay later when you choose to display the variable by selecting it, for example, as the contour variable.

4 - 9.6 Macro Commands for the FEA loader

You may also load FEA data files with the Tecplot macro language. The syntax is as follows:

```
$!READDATASET
 * "STANDARDSYNTAX" "1.0"
 * any of the name value pairs in the following table...

DATASETREADER = "FEA LOADER" See List below
```

The value for the DATASETREADER parameter should match the name of the loader as shown in the Select Import Format dialog, or as listed below:

- ANSYS® CDWRITE Input (FEA)
- ANSYS® Results (FEA)
- ABAQUS Input (FEA)
- ABAQUS .fil Data (FEA)
- ABAQUS Output Database (FEA)
- LSTC/DYNA Input (FEA)
- LSTC/DYNA Taurus State Database (FEA)
- MSC/NASTRAN Bulk Data (FEA)
- MSC/NASTRAN Output2 (FEA)
- MSC/Patran Neutral (FEA)
- OpenFOAM (FEA)
- PTC/Mechanica Design Study (FEA)
- SDRC/IDEAS Universal (FEA)
- 3D Systems STL (FEA)

Each name/value pair should be in double quotes.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Available Value(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARDSYNTAX</td>
<td>1.0</td>
<td>Required as the first instruction.</td>
</tr>
<tr>
<td>FEALoaderVersion</td>
<td>"424", "435", "436", "443"</td>
<td>Indicates the version of the loader that recorded the macro. Later versions of the loader emulate older versions where necessary. Current version is "443."</td>
</tr>
<tr>
<td>Append</td>
<td>"Yes" or "No"</td>
<td>Specify whether to append the current dataset with the FEA file(s).</td>
</tr>
<tr>
<td>FILENAME_File</td>
<td>"filename"</td>
<td>Specify the full or relative path of the file name.</td>
</tr>
<tr>
<td>SubdivideZonesBy</td>
<td>"DoNotSubdivide" "Component" "ElementType"</td>
<td>Specify method of zone division.</td>
</tr>
<tr>
<td>AutoAssignStrandIDs</td>
<td>"Yes" or "No"</td>
<td>Set to "Yes" to have Tecplot 360 EX assign the strand IDs.</td>
</tr>
<tr>
<td>AddToExistingStrands</td>
<td>"Yes" or "No"</td>
<td>Available only if Append is set to "Yes".</td>
</tr>
</tbody>
</table>
Example

The following example loads "myfile.odb" with the Abaqus Output Database loader. Zones 1 & 2 are loaded, along with the following variables: external force, stress, material ID, and part ID.

```
$!READDATASET
  "STANDARDSYNTAX" "1.0"
  "FILENAME_File" "myfile.odb"
  "SubdivideZonesBy" "Component"
  "AutoAssignStrandIDs" "Yes"
  "ZoneList" "1-2"
  "VarNameList" "External Force" + "Stress" + "Material ID" + "Part ID"
  "InitialPlotType" "Cartesian3D"
  "ShowFirstZoneOnly" "No"
DATASETREADER = 'ABAQUS Output Database (FEA)'
```

4 - 10 FLOW-3D Loader

The FLOW-3D loader allows you to load restart and selected FLOW-3D data files into Tecplot 360 EX. This loader supports Flow3D 11.0.1.15.

When working with FLOW-3D data in Tecplot 360 EX, we recommend linking the solution time between frames using Frame>Frame Linking.

The FLOW-3D Loader dialog has the following options:

- **File** - Use the [...] browse button to launch the Read FLOW-3D Data File dialog which will allow you to navigate to the data file you would like to load. You may load data files with the
Loading Data

flsgrf extension only. Alternatively, you may type the full path of the data file in the *File* text field.

When loading a parallel (MPI) results file, selecting *flsgrf* loads the data for all files. Selecting *flsgrf* will load a single file’s data, where *f* is an integer greater than 1.

- **Data Selection** - Use the *Data Selection* region of the dialog to specify whether to load restart or selected data. You may also opt to include Particle Data or to select a Data Subset.
 - **Load Restart Data** - Select this option to load restart data into Tecplot 360 EX. Restart data contains every simulation variable at a small number of time steps.
 - **Load Selected Data** - Select this option to load selected data. Selected data typically includes fewer variables than restart data. However, it usually has a larger number of time steps. Selected data is used to output variables of interest at many time steps without bloating the output file with “uninteresting” variables.

Selected data is available in the file only when you request it before the simulation run.

- **Include Particle Data** - Toggle-on “Include Particle Data” to load the particle data from your data file.
- **Data View** - Use the *Data View* region of the dialog to specify whether to view the data as external or internal flow. This option affects how the solid surfaces are drawn at block boundaries. For external flows, surfaces are drawn only at blocked boundaries in the mesh. For internal flows, surfaces are drawn around open space in the mesh, and blocked surfaces are eliminated. This option is recommended for solutions that involve flow into an enclosed volume, such as casting results.

- **Specify Additional Options** - Select the “Specify Additional Options” toggle to launch the FLOW-3D Loader Options dialog after selecting [OK] on the FLOW-3D Loader dialog. The FLOW-3D Loader Options dialog allows you to load a subset of zones and/or variables from the data file. The Options page of the dialog allows you to specify transient options, specify boundary cell options, and calculate the complement of F.

4 - 10.1 FLOW-3D Loader Options

The FLOW-3D Loader Options dialog is launched when you select the “Advanced Options” toggle in the initial Load Data dialog.
Variables Page

Use the Zones page of the dialog to select which zones from your dataset to load into Tecplot 360 EX. The box on the left lists the available zones, and the box on the right lists the variables selected to load into Tecplot 360 EX.

Zones Page

Similarly, use the Variables page of the dialog to select which variables to load.
Loading Data

Other Page

Use the Other page of the dialog to specify transient options, boundary options, and whether to calculate the complement of F.

The page has the following options:

- **Transient Options** - Use the Transient Options region of the dialog to specify:
 - **Time Skip** - Specify the interval between each loaded time step. A value of one loads all time steps, a value of two loads every other time step, and so forth.
 - **Auto Assign Strand IDs** - Select this option to allow Tecplot 360 EX to assign the Strand IDs to your data. Regions or components of solutions throughout an unsteady solution are tracked by Strand IDs. All zones that represent a particular region or component are assigned the same Strand ID. Selecting this option directs Tecplot 360 EX to assign Strand IDs to the loaded zones. This ensures that only the zones representing the chosen solution time are displayed in Tecplot 360 EX. Zones that do not have Strand IDs assigned are displayed at all solution times. See also Section 7 - 2 “Time Aware”.
 - **Add Zones to Existing Strands** - If you are appending data to an existing dataset, select Auto Assign Strand IDs to Zones in order for Tecplot 360 EX to append the new zones to existing strands. This is appropriate where the new data represents the same regions or components as are represented in the existing dataset, such as an additional solution time level of an unsteady solution.

For more information on working with transient data, refer to Section 7 - 2 “Time Aware”.

- **Calculate Derived Variables** - Use the Calculate Derived Variables region of the dialog to opt to include the **Complement of F**. The complement of F is calculated as:

 \[\text{Complement of } F = (1 - f) \cdot (1 - f) \]

 where \(f \) is the fluid fraction and \(v_f \) is the volume fraction.

The Fluid Surface, where Fluid Surface = \(v_f^* f \), is always calculated and added to the dataset.

- **Include Boundary Cells On** - Use the boundary cell region of the dialog to specify whether to load boundary cells on the I, J, or K extrema. An additional layer of boundary cells will be loaded on the given side of each block for each extremum selected.

- **Load on Demand** - Toggle-on “Cache unloaded data in temporary directory” to enable Tecplot 360 EX to create a temporary directory to cache the data. The data in the temporary directory is formatted such that it may be quickly read back into Tecplot 360 EX as needed.
4 - 10.2 FLOW-3D Macro Commands

The $READDATASET macro command is extended for the FLOW-3D loader with the following options:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Values</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filename</td>
<td>Path to flow-3d results file</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>DataGroup</td>
<td>"Selected" or "Restart"</td>
<td>"Restart"</td>
<td></td>
</tr>
<tr>
<td>IncludeParticleData</td>
<td>"Yes" or "No"</td>
<td>"No"</td>
<td></td>
</tr>
<tr>
<td>DeriveCompOfF</td>
<td>"Yes" or "No"</td>
<td>"No"</td>
<td></td>
</tr>
<tr>
<td>Append</td>
<td>"Yes" or "No"</td>
<td>"No"</td>
<td></td>
</tr>
<tr>
<td>AutoAssignStrandIDs</td>
<td>"Yes" or "No"</td>
<td>"Yes"</td>
<td></td>
</tr>
<tr>
<td>ZoneList</td>
<td>Set of zone numbers to load from the file</td>
<td>All</td>
<td>FLOW-3D refers to these as "blocks." Really, they are a set of zones that will belong to the same StrandID.</td>
</tr>
<tr>
<td>VarNumList</td>
<td>Set of variable names to load from the file</td>
<td>All</td>
<td>X, Y, Z, and "Fluid Surface" are always loaded</td>
</tr>
<tr>
<td>DataView</td>
<td>"Internal" or "External"</td>
<td>"External"</td>
<td>Specify whether to view the data as an internal or external flow solution.</td>
</tr>
<tr>
<td>IncludeBoundaryCells</td>
<td>"YES/NO"</td>
<td>"Yes" for all entries</td>
<td>Specify 6 boolean values for including boundary cells. The values are use the following order for the boundary cells: IMIN, IMAX, JMIN, JMAX, KMIN, KMAX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common.UVar</td>
<td>Number of variable "U"</td>
</tr>
<tr>
<td>Common.VVar</td>
<td>Number of variable "V"</td>
</tr>
<tr>
<td>Common.WVar</td>
<td>Number of variable "W"</td>
</tr>
<tr>
<td>Common.VectorVarsAreVelocity</td>
<td>TRUE</td>
</tr>
<tr>
<td>Common.PressureVar</td>
<td>Number of variable "P"</td>
</tr>
<tr>
<td>Common.DensityVar</td>
<td>Number of variable "RHO"</td>
</tr>
<tr>
<td>Common.TemperatureVar</td>
<td>Number of variable "TN"</td>
</tr>
<tr>
<td>Common.StagnationEnergyVar</td>
<td>Number of variable "RHOE"</td>
</tr>
<tr>
<td>Common.TurbulentKineticEnergyVar</td>
<td>Number of variable "TKE"</td>
</tr>
</tbody>
</table>

Auxiliary Data can be viewed on the Aux Data Page of the Data Set Information dialog (accessed via the Data menu).

4 - 11 FLUENT Loader

The FLUENT® Data Loader reads FLUENT Version 5 and newer case (.cas) and data (.dat) files up to and including version 14.0. To load files from earlier versions of FLUENT, you must first import them into FLUENT 5 or newer, then resave them in the newer format.

Particle data may also be loaded from an accompanying XML file. If loading a single .dat/.cas pair, all sections of particle data in an accompanying XML file are loaded. If loading multiple .dat/.cas pairs, one
Loading Data

particle section is loaded from the XML file for each .dat/.cas pair loaded. If the XML file is invalid, particle data will be skipped, but the rest of the data will continue to be loaded.

When possible, and assuming the user has the necessary permissions to create new files in the directory containing the FLUENT files, the FLUENT loader creates an index file for each case and data file it loads. These files are stored in a subdirectory called `tecplot-derived` located in the same directory as the case and data files and are used to load the data faster in future sessions. The FLUENT loader assumes that any files it finds in the `tecplot-derived` directory relate to the case and data files found in the parent directory. If the FLUENT data files are updated, delete the files in the `tecplot-derived` directory so that the FLUENT loader will regenerate them. (Be sure all Tecplot 360 EX sessions using the files are closed first.)

Tecplot 360 EX does not automatically calculate CFD variables from your existing FLUENT data variables. You may add the variables to your plots by performing calculations via the Analyze menu. Refer to Chapter 21: “CFD Data Analysis” for details.

Additionally, Tecplot 360 EX does not perform the same wall-boundary calculations that are performed by FLUENT. Instead, the cell-centered data will be extrapolated to the boundary.

See also Section 7 - 2 “Time Aware” for information on working with transient datasets in Tecplot 360 EX.

The following options are available:

- **Load Case and Data Files** - Loads both a case and a data file. The grid comes from the case file, and the solution comes from the data file.
- **Load Case File Only** - Loads the grid from a case file.
- **Load Residuals Only** - Loads the residual data (convergence history) from a data file. The residuals are not scaled or normalized.
- **Load Multiple Case and Data Files [DEFAULT]** - Displays the File List form in the dialog. You can load matched pairs of case and data files, or one case file and any number of data files that match it (that is, that have the same zones).

For all load options above, except Load Multiple Case and Data Files, the following controls are available:
Case File - Type the name of the case file you wish to load, or click [Select], then select the name of the file from the resulting dialog.

Data File - The data (.dat) file contains the solution and the residual (convergence history) data. Type the name of the data file, or click Select, then select the name of the file from the resulting dialog.

For the Load Multiple Case and Data Files load option, the following controls are available:

- Add Files - Choose case and data files to load from a file selection dialog. Selected files are appended to the file list.
- Remove - Remove files you have selected in the file list.
- Remove All - Remove all files in the file list.
- Flow is Unsteady - Indicates that the set of case and data files represents an unsteady solution. The loader adds a TIME auxiliary data item to each loaded zone. Tecplot 360 EX does not use this data, but other add-ons may.
- Flow Solution is Unsteady/Time Interval - The FLUENT data loader saves the problem time of each solution as the solution time variable. There are two options for determining the time to save for each one:
 1. Reading the flow-time entry from each .dat file,
 2. Applying a constant time interval to successive .dat files.

- Read Time from Data Files - If this option is selected, Tecplot 360 EX reads the flow-data parameter from each .dat file. If no .dat files are included (i.e., only .cas files are loaded), the solution time variable will not be created for the zones.
- Apply Constant Time Interval - If this option is selected, Tecplot 360 EX applies the time interval specified in the Time Interval text field to zones created from successive .cas or .dat files. The zones from the first .cas/.dat files are given time 0. Times for successive files are calculated by incrementing the time of the previous files by the specified time interval.
- Assign Strand IDs for Zones - Toggle-on to have Tecplot 360 EX assign Strand IDs to transient zones. Common strand IDs will be assigned to each cell or boundary zone with matching FLUENT zone IDs.
- Add Zones to existing Strands - Toggle-on to add the appended zones to StrandIDs in the current dataset.

Time Interval - If "Apply Constant Time Interval" is selected, the time interval entered in the text field is included.

For the load options other than Load Residuals, some or all of the following controls are available:

- Load Cells and Boundaries - Loads the cell (solution) and boundary zones from the case file. Each fluid or solid cell zone and each boundary zone will be displayed as a separate zone in Tecplot 360 EX.
- Load Cells Only - Loads only the cell (solution) zones. Each zone will be displayed as a separate zone in Tecplot 360 EX.
- Load Boundaries Only - Loads only the boundary zones. Each zone will be displayed as a separate zone in Tecplot 360 EX.
- Select Zones and Variables to Load - Select in a separate dialog which zones and variables to load. The option requires the loader to pre-scan all files, which can be time-consuming.
• **Create All Zones As Polyhedral** - Select this option to load all FLUENT zones as Tecplot 360 EX polytope (polygonal or polyhedron) zones. We recommend you select this option, as converting all zones to polyhedral zones eliminates the possibility of hanging nodes and holes in your iso-surfaces or slices. In this case, the number of faces per element is derived from the element-type, and the number of nodes per face is derived from the face-type. The existence of hanging nodes (determined from the existence of a cell-tree and/or face-tree section) adds to the number of faces in the element and the number of nodes in the face that contains the hanging node. Since polygons must have at least 3 nodes, line segment elements will not be converted. When this option is not selected, only FLUENT polytope zones will become Tecplot 360 EX polytope zones. In this case, if hanging nodes are encountered, Tecplot 360 EX will create larger faces, compress connectivity, and expand face neighbors.

• **Include Particle Data from .dat** - Some FLUENT simulations include the effects of discrete particles, such as sand grains or water droplets, in the .dat file. Select this option to load this particle data along with the flow solution. All particles from a particular injection will be displayed in a single Tecplot 360 EX zone (one zone per injection). If you have chosen to select which zones and variables to load, this option is disabled, but the particle zones and variables will be displayed in the selection lists, allowing you to load them with the flow solution. Newer versions of FLUENT store the particle data in a separate .xml file. To load this data, use the Load Multiple Case and Data Files mode and simply add any .xml files to the file list.

• **Average to Nodes** - Selecting this option directs the loader to average FLUENT’s cell-centered data to the grid nodes. This can speed up subsequent operations in Tecplot 360 EX, especially slicing. FLUENT stores solution data at cell centers (face centers for boundary zones). By default, the FLUENT data loader loads the data cell-centered as well. However, you have the option to average the data to the nodes using Arithmetic or Laplacian averaging. Arithmetic averaging is faster, but calculates values at hanging nodes (nodes in the center of a cell face or edge) only from those cells where the node is a corner. This can lead to discontinuous contours. Laplacian averaging option takes additional neighboring cells into account, and results in smoother contours when hanging nodes are present. By default, non-grid variables are stored at cell centers, consistent with FLUENT.
 - **Arithmetic** - A simple, fast arithmetic averaging will be performed.
 - **Laplacian** - A more accurate, much slower averaging will be performed that accounts for hanging nodes and cell sizes.

If you chose the Select Zones and Variables to Load option, select only those zones and variables you wish to load from the files Fluent Loader Options dialog.

This dialog has a Zones page and a Variables page. The left-hand list of each page shows, respectively, all zones and variables contained in the files you selected. The right-hand list of each page shows the zones...
and variables that will be loaded when you select [OK]. Use the [Move], [Move All], [Remove], or [Remove All] buttons to edit the Zones/Variables to Load lists.

4- 11.1 Macro Commands for the FLUENT loader

The syntax for loading FLUENT data files with the Tecplot macro language is as follows:

```plaintext
$!READDATASET
  "STANDARDSYNTAX" "1.0"
  "...are of the name value pairs in the following table..."
  "DATASETREADER = "FLUENT DATA LOADER"
```

Each name/value pair should be in double quotes. Refer to the Scripting Guide for details on working with the Tecplot macro language.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Available Value(s)</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARDSYNTAX</td>
<td>1.0</td>
<td>n/a</td>
<td>Must be the first instruction.</td>
</tr>
<tr>
<td>Append</td>
<td>"Yes" "No"</td>
<td>"No"</td>
<td>Specify whether to append the current dataset with the FLUENT file(s).</td>
</tr>
<tr>
<td>LoadOption</td>
<td>"CaseAndData" "CaseOnly" "ResidualsOnly" "MultipleCaseAndData"</td>
<td>n/a</td>
<td>Specify whether to load case and data files, a case file only, residual data only, or multiple case and data files.</td>
</tr>
<tr>
<td>FILENAME_CaseFile</td>
<td>"filename"</td>
<td>n/a</td>
<td>Specify the full or relative path of the case file name. Used if the LoadOption is CaseAndData or CaseOnly.</td>
</tr>
<tr>
<td>FILENAME_DataFile</td>
<td>"filename"</td>
<td>n/a</td>
<td>Specify the full or relative path of the data file name. Used if the LoadOption is CaseAndData or ResidualsOnly.</td>
</tr>
<tr>
<td>FILELIST_Files</td>
<td>"n" "file1" "file2"... "filen"</td>
<td>n/a</td>
<td>Specify the number of files, followed by each file name. Only available if the LoadOption is MultipleCaseAndData.</td>
</tr>
<tr>
<td>UnsteadyOption</td>
<td>"ReadTimeFromDataFiles" "ApplyConstantTimeInterval"</td>
<td>"ReadTimeFromDataFiles"</td>
<td>Only available if LoadOption is MultipleCaseAndData. For "ApplyConstantTimeInterval", the TimeInterval parameter is required.</td>
</tr>
<tr>
<td>TimeInterval</td>
<td>"<double>"</td>
<td>"1.0"</td>
<td>Specify the value of the time interval. Only available if the UnsteadyOption is set to ApplyConstantTimeInterval.</td>
</tr>
<tr>
<td>AssignStrandIDs</td>
<td>"Yes" "No"</td>
<td>"No"</td>
<td>Only available if LoadOption is MultipleCaseAndData.</td>
</tr>
<tr>
<td>AddZonesToExistingStrands</td>
<td>"Yes" "No"</td>
<td>"No"</td>
<td>Only applicable when Append is set to "yes".</td>
</tr>
</tbody>
</table>
The FVCOM Loader allows you to import netCDF files output from FVCOM into Tecplot 360 EX. Currently, classic netCDF and netCDF-4 formats are supported. The loader imports one or more FVCOM history outputs with the same topology and variable structure into a single Tecplot dataset, creating one zone for each time step. FVCOM history outputs with differing topology or variable structure can be combined but only through appending.

The X and Y grid variables are loaded directly from the file and projected to each Z position, which is derived from the zeta, h, and siglev variables. The grid variables are chosen based upon the Coordinate System specified in the FVCOM attribute data. If no Coordinate System is provided, Cartesian is assumed.

Keyword Table

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Available Value(s)</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>GridZones</td>
<td>“CellsAndBoundaries”</td>
<td>“CellsAndBoundaries”</td>
<td>If “SelectedZones” is specified, either the ZoneList parameter, the VarNameList parameter, or both parameters are required.</td>
</tr>
<tr>
<td>ZoneList</td>
<td>“Z1,Z2,...Z3-37”</td>
<td>all zones</td>
<td>Specify the list of zones to load. You may specify a comma-separated list or use a range (-). This option is only available if GridZones is set to SelectedZones.</td>
</tr>
<tr>
<td>VarNameList</td>
<td>“V1*+V2*+V3*+...”</td>
<td>all variables</td>
<td>Specify the list of variables to load. Use the “*” symbol between each variable number. This option is only available if GridZones is set to SelectedZones.</td>
</tr>
<tr>
<td>IncludeParticleData</td>
<td>“Yes”</td>
<td>“No”</td>
<td>Available only for CaseAndData and MultipleCaseAndData load options. Applies only to particle data in the .dat file; if loading particle data from an XML file, the XML file should simply be included as one of the files to be loaded in FILELIST_Files.</td>
</tr>
<tr>
<td>AllPolyZones</td>
<td>“Yes”</td>
<td>“No”</td>
<td>Not available if the load option is ResidualsOnly. Set to “Yes” to convert all zones to Tecplot polytope zones (polyhedral or polygonal).</td>
</tr>
<tr>
<td>AverageToNodes</td>
<td>“Yes”</td>
<td>“Yes”</td>
<td>Specify whether to average the cell-centered data to the grid nodes.</td>
</tr>
<tr>
<td>AveragingMethod</td>
<td>“Arithmetic”</td>
<td>“Arithmetic”</td>
<td>Specify the averaging method to use. Available only if AverageToNodes is set to “yes”.</td>
</tr>
<tr>
<td>LoadAdditional Quantities</td>
<td>“Yes”</td>
<td>“No”</td>
<td>Loads additional quantities, such as residuals, which may be stored in the file.</td>
</tr>
</tbody>
</table>

4 - 12 FVCOM Loader

The FVCOM Loader allows you to import netCDF files output from FVCOM into Tecplot 360 EX. Currently, classic netCDF and netCDF-4 formats are supported. The loader imports one or more FVCOM history outputs with the same topology and variable structure into a single Tecplot dataset, creating one zone for each time step. FVCOM history outputs with differing topology or variable structure can be combined but only through appending.

The X and Y grid variables are loaded directly from the file and projected to each Z position, which is derived from the zeta, h, and siglev variables. The grid variables are chosen based upon the Coordinate System specified in the FVCOM attribute data. If no Coordinate System is provided, Cartesian is assumed.
The following auxiliary data is added to the data by the loader:

<table>
<thead>
<tr>
<th>Auxiliary Name</th>
<th>Cartesian</th>
<th>Spherical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common.XVar</td>
<td>Number of variable “x”</td>
<td>Number of variable “lon”</td>
</tr>
<tr>
<td>Common.YVar</td>
<td>Number of variable “y”</td>
<td>Number of variable “lat”</td>
</tr>
<tr>
<td>Common.ZVar</td>
<td>Number of variable “z”</td>
<td>Number of variable “z”</td>
</tr>
</tbody>
</table>

The vertical level and layer variables are added for visualization of FVCOM model layers. FVCOM variables stored at the nodes of each sigma level are loaded as nodal variables and variables stored at the elements for each sigma layer are loaded as cell-centered variables. FVCOM variables stored at the nodes of each sigma layer are interpolated to the volume cell-centers ignoring any FVCOM specified boundary conditions. Variables located at the elements of each sigma level are ignored. Attributes for the file and each variable are loaded into dataset and variable auxiliary data respectively.

4 - 13 General Text Loader

The General Text Loader add-on allows you to read ASCII text data files in a variety of formats. You can specify variable and dataset title information or indicate specific places to read them from in your data file. Instruction settings for reading a type of file can be saved and restored so they do not have to be entered again each time a new file of the same type is loaded.

The following options are available:

- **Filename** - The name of the file to be loaded. This is automatically filled in with the name of the file selected in the Load Data dialog, but may be changed using the *Browse* button.
- **Titles** - Launches the *Dataset Title* dialog, which allows you to specify dataset title properties.
- **Variables** - Launches the *Variable Import Instructions* dialog which allows you to specify dataset variable properties.
- **Data** - Launches the *General Text Loader: Data* dialog which allows you to specify dataset field properties.
Loading Data

- **General Filters** - Launches the General Text Loader: Filters dialog which allows you to specify general filters when reading your file.
- **Configuration File List** - This list shows available configuration files. Configuration files can be edited using a text editor, although this is not usually necessary and is not recommended. The format of these files is listed on the Configuration page.
 - **Load** - Loads a single configuration file from any location.
 - **Save** - Saves a single configuration file to any location.
 - **Rename** - Renames a configuration file.
 - **Delete** - Deletes a configuration file.
 - **New** - Creates a new, untitled configuration file.
- **Data Preview**
 - **View Raw Data** - This displays the data exactly how it looks in the file without any processing.
 - **View Processed Data** - This displays the processed and filtered data that will be loaded.
 - **View Options** - Launches the General Text Loader: View Options dialog.

4 - 13.1 Dataset Title

The Dataset Title dialog allows you to specify options for General Text Loader titles.

- **Use Title** - Manually enter the dataset title, rather than have General Text Loader scan the file for it.
- **Use line number** - Enter the line number of the dataset title in the file. The General Text Loader skips white space on the line until text, and then reads until the delimiter indicated is found. To include spaces in the title, enclose them in double quotes.
- **Use first line containing keyword** - Enter a keyword for the dataset title line. The title will read the first line containing this keyword (case insensitive). General Text Loader searches for a title on this line in the following order, (unless the delimiter is specified as fixed):
 a. First, it will look for any text enclosed in double quotes. If it finds this, then the enclosed text will be read as the title.
 b. If no text in double quotes is found, the first non-white space text after the keyword ending with the indicated delimiter will be used.
- **Text Delimiter** - The text delimiter indicates when the end of text has been reached. You can set it to one of the following:
 - **Auto** - Space, tab, comma, semicolon.
 - **Fixed** - Each width number of characters on the line is a token field. White space is removed from the beginning and end of the field.
4 - 13.2 Variable Import Instructions

The Variable Import Instructions dialog of the General Text Loader allows you to scan for the location of the variable names in the data file, and enter which variables to load.

- **Scan for variable names** - Specify the following:
 - **Start line** - Enter the starting line of variable names in the file.
 - **End line** - Enter the ending line of the variable names in the file. This is typically the same as the starting line.
 - **Delimiter** - The delimiter indicates when the end of each variable name has been reached. You can set it to one of the following:
 - **Auto** - Space, tab, comma, semicolon.
 - **Fixed** - Each `width=n` number characters on the line is a variable. White space is removed from the beginning and end of the field. For example, if the line length is 60 and the width is ten, the columns 1-10, 11-20, 21-30, and so forth, are variable names. Spaces are removed from the beginning and end of the variable names.
 - **Width** - If the delimiter is fixed, enter the width of each field here.
 - **Enter Variable Names** - Select this option to enter a list of variable names in the dialog box. Variable names should be separated by carriage returns.
Select Variables to Load - Launches the Variable to Load dialog.

- Variables to Skip - Displays a list of variables that will be skipped.
- Variables to Load - Displays a list of variables that will be loaded.

Use the [Move], [Move All], [Remove], or [Remove All] buttons to edit the "Variables to Load" list.
4 - 13.3 General Text Loader: Data

The Data Import Instructions dialog of the General Text Loader allows you to specify the location of the data names in the data file, and what data to load.

- **Start Identification**
 - First all-numeric line - Select if the data begins at the first line of a file that contains only numbers. If you have specified multiple zones, all non-numeric lines will be skipped at the beginning of each zone.
 - First line after line with keyword - Select if the data begins at the first non-blank line after the line containing the specified keyword. The keyword is case insensitive.
 - Start at line number - Select to specify the line number where the data begins. Blank lines are ignored in the data section.

- **End Identification**
 - All lines up to first non-numeric line - Select if the data ends at the first non-blank line containing any text.
 - Stop at line number - Select to specify the line number where the data ends.
 - All lines up to line with keyword - Select if the data ends at the first line before the line with the specified keyword. The keyword is case insensitive.
 - End of file - Select if the data ends at the end of file.

- **Data Identification**
 - Point format - In this format all values of all variables are given for the first point, then the second point, etc.
Loading Data

- **Block format** - In this format all values for the first variable are given, then all values for the second variable, etc.
- **Data value delimiter** - The data value delimiter indicates when the end of a data value has been reached. You can set it to one of the following:
 - **Auto** - Space, tab, comma, semicolon.
 - **Fixed** - Each 'width=n' number characters on the line is a token field. White space is removed from the beginning and end of the field. For example, if the line length is 60 and the width is ten, the columns 1-10, 11-20, 21-30, and so on, are token fields.
 - **Width** - If the delimiter is 'fixed', enter the width of each field here.
- **Data Dimension** - If the data dimensions are entered, General Text Loader adds zones as necessary depending on the number of data points found in the file. There must be an equal number of data points for each zone (equal to the product of the IJK dimensions).
 - **Auto-Calculate IMAX** - The I-dimension is calculated based on the number of data points found. J and K-max are set to one.
 - **Specify Dimensions** - Specify the I, J, and K-dimensions for the data. There must be enough data points found in the file to match the indicated dimensions.
 - **Allow Multiple Zones** - If checked, General Text Loader will attempt to read more than one zone from the data file.
 - **Zone ends on line with keyword** - If Allow multiple zones is selected and Auto-calculate IMax is selected, then you must enter a keyword here to mark the end of one zone and the beginning of the next. Zones are ended when a line containing this text is found.
- **Ignore non-numeric tokens** - If checked, then any non-numeric information in the data sections is ignored. If not checked, General Text Loader displays an error if any non-numeric data is found in the data section.

4 - 13.4 General Text Loader: Filters

Use the General Filters dialog of the General Text Loader to filter the data file.

- **Ignore All Lines Starting With** - If checked, all lines beginning with the entered string are ignored.
- **Ignore All Lines Containing** - If checked, all lines containing the indicated text are ignored.
General Text Loader

- **Ignore Character Column Position(s)** - If checked, then the entered columns are ignored when scanning the file. Columns are entered as a single number or a hyphenated range, one or more of which may be separated by commas.

 If there are tabs in the data file, they are not expanded in this filter. For example, if column 1 is a tab and you wish to skip column 2, you should enter 2, even though a text editor will show more than one space after expanding the tab.

- **Ignore Specific Lines** - If checked, entered lines are ignored when scanning the file. Lines are entered as a single number or a hyphenated range, one or more of which may be separated by commas. You may also use “end” to specify the last line of the file.

- **Specify Values for Blanked Cell** - If checked, you can specify a value which the loader uses for blank cells.

 This option is only available if the data delimiter is a comma or semicolon. You can change the data value delimiter using the **Data Import Instructions** dialog.

4 - 13.5 General Text Loader: View Options

The View Options dialog of the General Text Loader allows you to specify the data display.

General Options

- **Limit lines displayed** - Limits the number of lines displayed in the preview window. For large files, you may want to set this to a number less than the total number of lines. The fewer number of lines, the faster the preview display.

- **Do not limit** - If you select this toggle, the entire file will be displayed in preview mode.

- **Auto Process** - If selected, General Text Loader automatically refreshes all information about the file whenever any loader settings are changed. For very large files (multi-megabyte), this option is not recommended, since re-scanning a large file can be time consuming.
4 - 13.6 General Text Loader Configuration File

A configuration file contains all of the instructions that tell the General Text Loader how to load a particular type of text file. This information is collected from the dialog fields and written to a file when you click [Save] on the main dialog. The configuration file format is similar to the Tecplot macro language. Configuration files for the general text loader are ASCII text files which use a command set that can describe all loading instructions. Normally you do not need to edit these files, as they are automatically written by the loader when you select New on the main dialog.

General Text Loader CONFIGFNAME Command

When reading a dataset using General Text Loader, instead of specifying individual parameters in $!READDATASET, you may use the CONFIGFNAME command.

This consists of:

```
CONFIGFNAME = <string>
VERSION = <integer>
# version of the template file (default is 100)
# Note: changing the version number may cause unpredictable behavior
TITLE
{  SEARCH = [NONE|LINE|KEYWORD] # default = NONE
      NAME = <string>
      # default = "New Dataset", ignored if SEARCH is not NONE
      LINE = <integer> # 1-based, ignored if SEARCH is not LINE
      KEYWORD = <string> # ignored if SEARCH is not KEYWORD
      DELIMITER = [AUTO|TAB|SPACE|SEMICOLON|COMMA|FIXED]
      WIDTH = <integer> # Valid only if DELIMITER = FIXED
  }
VARIABLES
{  SEARCH = [NONE|LINE]
      NAMES = <string> # ignored if SEARCH is SCAN
      # <string> is a comma separated string
      LOADED = <all|n1,n2,...,nn> # list of variables to be loaded
      STARTLINE = <integer> # 1-based, ignored if SEARCH=NONE, default = 1
      STARTID = [FIRSTNUMERICLINE | LINE | KEYWORD]
    }
      KEYWORD = <string> # ignored if STARTID is not KEYWORD
```
General Text Loader

Where <string> is a file name or file path. Settings will be loaded from the file name specified in <string>. This command is only allowed in conjunction with the $!READDATASET command as described below. It may not be used inside a configuration file.

```plaintext
$!LINELINE = <integer> # 1-based, ignored if SEARCH=NONE, default = 1
$!DELIMITER = [AUTO|TAB|SPACE|SEMICOLON|COMMA|FIXED]
$!WIDTH = <integer> # Valid only if DELIMITER = FIXED

$!DATA{
  $!IGNORENONNUMERICTOKENS = <boolean> # default = TRUE
  $!IMPORT
    $!LINE = <integer>
      # 1-based, ignored if STARTIDENTIFICATION is not LINE
  $!ENDID = [FIRSTNONNUMERICLINE | LINE | KEYWORD]
    $!KEYWORD = <string> # ignored if ENDID is not KEYWORD
    $!LINE = <integer> # 1-based, ignored if ENDID is not LINE
  $!FORMAT = [POINT|BLOCK] # default POINT
    $!DELIMITER = [AUTO|TAB|SPACE|SEMICOLON|COMMA|FIXED]
    $!WIDTH = <integer> # Valid only if DELIMITER = FIXED
}

$!DIMENSION{
  $!AUTO=<boolean> # default = TRUE
  $!IMAX=<integer> # ignored if AUTO = TRUE, default = 1
  $!JMAX=<integer> # ignored if AUTO = TRUE, default = 1
  $!KMAX=<integer> # ignored if AUTO = TRUE, default = 1
  $!USEMULTIPLEZONES = <boolean> # ignored if USEMULTIPLEZONES = FALSE
  $!KEYWORD=<string> # ignored if USEMULTIPLEZONES = FALSE
}

$!GLOBALFILTERS # filters are applied cumulatively, so lines matching
# any of the criteria are filtered
{
  $!COMMENT = <string> # ignore lines beginning with <string>
  $!NUMBER = <integer> # ignore all lines starting with line number
    $!<integer>
  $!KEYWORD = <string> # ignore all containing <string> (case insensitive)
  $!COLUMNS = <list> #list is a comma separated list of number ranges
    # example: "1-80,100-end", etc. Must be in double quotes
  $!ROWS = <list> # same as above
  $!USEBLANKCELLVALUE = <boolean> # if TRUE, then the value of blank cells
    # is BLANKCELLVALUE
  $!BLANKCELLVALUE = <double> # blank cell value. Ignored if
    # USEBLANKCELLVALUE is FALSE
}
```
Loading Data

For example, instead of:

```plaintext
$!READDATASET "C:\test.txt" 
"VERSION=1.0 FILEDESC="general text" +""+
"TITLE(SEARCH=NONE NAME="New Dataset") LINE=1 DELIMITER=AUTO WIDTH=10
"+""+""VARIABLES("SEARCH=LINE LOADED All STARTLINE=1 ENDLINE=3
"+""+""DATA("+"""\"TOLERATIONNONNUMERICITOKES=TRUE
IMPORT="+""+""STARTID=LINE ("+"LINE=1
"+""+""END=FIRSTNONNUMERICLINE("+""LINE=1)+""+""FORMAT=IJKPOINT
DELMITER=AUTO WIDTH=1)+""+""DIMENSION="+""AUTO-TRUE
CREATEMULTIPLEZONES=FALSE
)+""+""GLOBALFILTERS("+""USEBLANKCELLVALUE=TRUE
BLANKCELLVALUE=0.000000 )
DATASETREADER = General Text Loader"
```

Using the CONFIGFNAME command, you can write:

```plaintext
$!READDATASET "myfile.dat" 
"CONFIGFNAME=c:\config_files\myconfig.lgc" +""+
```

Components of the Configuration File

- All General Text Loader configuration files must start with the line:
  ```plaintext
  #!TECPLOT_LOADGEN
  ```
- Instruction Syntax - Each instruction file contains commands which describe the loading instructions.
- Comments - Any text following '#' to the end of the line is ignored.
- String Format - The <string> parameter must be enclosed in double quotes. You can include a double quote character in the string by preceding it with a backslash '\'. For example:
  ```plaintext
  "This is a normal string"
  "This is a \"quote\" inside a string"
  ```
- List Format - The <list> parameter type is defined as one or more number ranges, separated by commas, enclosed in double quotes. A number range may be a single number or two numbers separated by a dash. Optionally, you may use "end" to indicate the last valid number. For example:
  ```plaintext
  "1"
  "1,2-3,5"
  "10-end,3,2-5"
  ```
- Command List - The commands in the file may appear in any order, and any command may be divided into any number of lines (that is, all white space, including carriage returns, is ignored).

4 - 14 HDF Loader

The HDF Loader add-on can load 1D, 2D, and 3D Scientific Data Sets (SDS) from HDF files. When a dataset from an HDF file is imported, the file is scanned and a list of all SDS in the file is displayed in the Scientific Data Sets to load portion of the HDF Loader dialog. Select one or more SDS to import. Every SDS that you select must have the same dimension. A rectangular I, II, or IJK-ordered zone (for 1, 2, or 3D data, respectively) is created for each SDS that you select to load.

1. The HDF Loader uses the public-domain HDF API code library from the National Center for Supercomputing Applications (NCSA), University of Illinois, Urbana-Champaign.
The HDF Loader dialog has the following options:

- **Scientific Data Sets to load** - Select one or more SDS's to load. Each SDS that you select must have the same rank (dimension).
- **I-Skip** - Select the I-Skip value. A skip value of one loads every data point, a skip value of two loads every second data point, and so on.
- **J-Skip** - Select the J-Skip value.
- **K-Skip** - Select the K-Skip value.
- **Select File** - Select an HDF file.
- **Attributes** - Displays attributes of each SDS found, such as number type, rank, label, and so on.

You may also click **Select File** to choose a different file.

4 - 14.1 HDF Loader Limitations

The HDF Loader can import only Scientific Data Sets from HDF files, and these are imported in a manner similar to NCSA’s own HDF viewer. The way in which the data file is interpreted cannot be altered in this release of the loader.

4 - 15 HDF5 Loader

The HDF5 loader add-on allows you to import general HDF5 files into Tecplot 360 EX. The loader provides a mechanism for importing generic data from multiple HDF5 datasets or groups. The HDF5 loader will load datasets within user selected groups, load one or more user selected datasets to one zone, load multiple user selected datasets to multiple zones, execute macros after data has been loaded, create implicit X, Y, and Z grid vectors as needed, sub-sample loaded data, and reference user selected vectors for X, Y, and Z grids. Datasets must be ordered data. The HDF5 library used is version 1.8.17.

4 - 15.1 Data Selection

One or more files may be opened if all selected files have an identical hierarchy. Hierarchy information for the selected HDF5 files is displayed in the form: /group/[group]/.../ dataset - the dimension of each dataset is displayed immediately following the dataset name. In this window, one or more datasets or groups may be selected for loading.

4 - 15.2 Importing/Loading Data

Datasets may be loaded using one of three methods: 1) **Loading Multiple Datasets to One Zone (default)**, 2) **Loading Multiple Datasets to Separate Zones**, or 3) **Loading Datasets by Group**.

Loading Multiple Datasets to One Zone (default)

Loading multiple datasets to one zone is the default method of importing HDF5 files. Using this method, the HDF5 loader will create one zone with N variables, where N is the number of HDF5 datasets selected.
Loading Data

Selected datasets may have one to three dimensions. The dimension of loaded Tecplot 360 EX variables will match the I, J, and K values of the selected datasets. Variable names are assigned the corresponding names of selected datasets. All selected datasets must have equivalent dimensions.

To import your data, select one or more datasets from the Available Datasets window. All selected datasets must be identical in dimension; dataset dimensions are shown immediately to the right of dataset names in the Available Datasets window.

Loading Multiple Datasets to Separate Zones

Using this method, the HDF5 loader will create N zones, where N is the number of datasets selected in the Available Datasets window. Each zone contains one variable per selected dataset where each dataset must have one to three dimensions. The I, J, and K values of each Tecplot 360 EX zone will match the dimensionality of each selected dataset. Variable and zone names are automatically assigned. Dimensionality may vary between selected datasets.

To import your data using this method, select the "Load to Separate Zones" toggle. Select one or more datasets from the Available Datasets window. One zone will be created for each selected dataset and each zone will contain exactly one variable (unless you selected Create Implicit Grid Values or Referencing Data Grids).

Loading Datasets by Group

Using this method, the HDF5 loader will create N zones with M variables, where N is the number of groups selected in the Available Datasets window and M is the number of datasets in each group. The I, J, and K indices of the Tecplot 360 EX variables will be equivalent to the respective dimension of selected datasets. Datasets in any selected group must be equal in dimension; however, datasets may be unequal in dimension between groups. When selecting multiple groups, all groups must contain an equal number of datasets and dataset names must be identical between groups. The HDF5 loader will only load datasets within the root directory or within a subgroup, i.e., the HDF5 loader will not load data within nested groups.

To import your data using this method, select the "Load Datasets by Group" toggle. Press [Select File] to open a HDF5 file. Select one or more groups from the Available Datasets window; all groups must contain an equal number of datasets where all datasets have identical names between groups. The number of selected groups determines the number of zones that load into Tecplot 360 EX. Zone names will match the name of the corresponding group. Variable names will match the respective dataset name. Each zone will include as many variables as datasets per selected groups.

4 - 15.3 Additional Options

Additional options may be specified when loading HDF5 data into Tecplot 360 EX. These options include: Using Macros, Sub-Sampling Data, Referencing Data Grids, and Grid Generation.

Using Macros

Macros may be defined within a HDF5 vector and placed in any group. Each character string in the selected vector must be a valid one-line Tecplot macro. Macros are executed in the order encountered after all data are loaded.

To run a macro defined as a character vector in your HDF5 file, select the "Run Macros in Selected Group" toggle. Select the macro you want to execute from the Select Macro pull-down menu. Your macro will run after your data has been successfully loaded into Tecplot 360 EX.
Sub-Sampling Data

The HDF5 loader will sub-sample the first, second, and third dimensions of loaded datasets respectively as defined by the user. The default skip-value is 1. When specifying non-unitary skip values, the dimensionality of all selected datasets must be equivalent. Datasets will be sub-sampled using the user defined I-Skip, J-Skip, and/or K-Skip values – skip values must be whole numbers.

To sub-sample data in the first, and/or second, and/or third dimensions of selected datasets, change the respective I-Skip, and/or J-Skip, and/or K-Skip values located in the HDF5 loader dialog. If the skip-values are non-unitary then selected datasets must have equivalent dimensions.

Referencing Data Grids

The HDF5 loader allows users to specify X, and/or Y, and/or Z grid vectors. Selected vectors are used for plotting all zones. Vectors are of dimension 1 and length M. The X grid vector length must be equal to the first dimension of selected datasets, the Y grid vector length must be equal to the second dimension of selected datasets, and the Z grid vector length must be equal to the third dimension of selected datasets.

The number of selected grid vectors must equal the rank of selected datasets.

Grid Generation

The HDF5 loader can automatically create X, Y, and Z grid vectors as necessary for selected datasets. Grid vectors will be of length equal to the corresponding dimension.

To automatically create X, Y, and Z grid vectors, accept the default setting of "Create Implicit Grid Values" in the HDF5 loader dialog. The grid vectors will be created upon loading your data into Tecplot 360 EX.

4 - 16 Kiva Loader

The Kiva loader imports GMV format files that were exported from Kiva.

- **Select Input Files** – From this button, multiple files can be selected in the Read Kiva/GMV File dialog. Those that are in GMV format will be added to the list of Kiva/GMV files. Once files are added to this list, they will remain in the list throughout the Tecplot 360 EX session, unless the [Clear List] button is selected.

- **File Selections** - Use the File Selection options for long file lists. Identify the first file to load by entering a number in the Start field, and the last file to load by entering a number in the Stop field. Enter a value of 2 in the Skip field to load every other file, or 3 or greater to skip more files. To see the list selections updated according to the values in the Start, Stop, and Skip fields, click the [Apply Skip] button. At any time, you can choose to Select All or Deselect All files.

- **Velocity Vector** – Identify the naming convention for your velocity vectors.

- **Loading Options**:
 - **IsDouble** - Allows greater precision for your data values.
 - **LoadParticleData** - Adds a zone for any files containing particle data.
4 - 16.1 Select Variable to Load

After clicking the [OK] button with one or more files selected, the Select Variables dialog appears. Clear All allows only variables X, Y, and Z to be loaded. You can use the [Select All] button to load all variables, or you can highlight variable names in the list.

4 - 17 PLOT3D Loader

The PLOT3D Loader add-on can import data files formatted for the PLOT3D program developed by Pieter Buning at the NASA Ames Research Center. Some extensions such as unstructured data that are now available in FAST, the successor to PLOT3D, are also supported.

4 - 17.1 File Combinations

Use the File Selection page of the PLOT3D Loader dialog to specify whether to load just grid files, both the grid and solution files, or just solution files. When loading grid and solution files together, either one grid file must be loaded (in which case it is assumed that all solution files use this grid), or a number of grid files equal to the number of solution files must be loaded (in which case it is assumed that there is a grid file for each solution file). If multiple grid files are loaded, all must use the same organization (binary or ASCII, etc.). Only the first file is scanned for organization.

Choosing both solution and grid files will allow you to optionally specify a name file as well. The name file contains names to replace either the function or solution variable names on a 1-to-1 basis for as many names as are in either file.

If a boundary file exists, it must have a name of the form `gridfilenameextension.fvbnd` and be in FieldView 1.4 format to be automatically loaded.

You may append the files being loaded to the current data set by toggling-on the Append option. The files being appended should have the same number of zones as data that has already been loaded. If some zones are static and some are time-aware, load the static zones and then append the time-aware zones.

If you are loading more than one grid file and they all have the same structure, make sure the Uniform Grid Structure option is toggled-on for best performance. If you are unsure, toggle-off this option to make sure that the data can be loaded without errors.

This page also allows you to automatically assign Strand IDs for transient zones. This option is toggled-on by default. An option to add zones to current strands can be used if you are appending zones to existing strands.
transient data. This option is toggled-off by default. Finally, you can have new strand IDs generated for each time step. This option is toggled-on by default.

Transient options do not apply to Plot3D function files since these do not contain time.

The Plot3D loader attempts to use numbers in filenames as solution times for transient data. Both integers and decimal fractional values are detected in filenames, and values may be negative. If multiple numeric fields are found in the data set's filenames, the one with a unique value in each filename being loaded is taken as the solution time; if multiple such fields are found, the rightmost one is used.

Some solvers that write data in PLOT3D format use the same solution time for all time steps. To accommodate such solvers, the PLOT3D loader will attempt to extract solution times from filenames whenever the solution time information contained in the actual data set is inconsistent or contradictory, even if the loader has not been explicitly instructed to do so.

The following table describes what the PLOT3D loader does in all six grid/solution scenarios:

<table>
<thead>
<tr>
<th>Load</th>
<th>Not Appending</th>
<th>Appending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid Only</td>
<td>Existing dataset is deleted and zones (one per grid) are loaded.</td>
<td>New zones are added (one per grid). Solution variables in new zones are zeroed out.</td>
</tr>
<tr>
<td>Grid and Solution</td>
<td>Existing dataset is deleted and zones (one for each grid in each solution file) are loaded. Each set of zones loaded shares spatial variables with the first set of grids loaded.</td>
<td>Same as "Not Appending" except original dataset is preserved. Existing dataset must have at least as many variables as the number needed by the incoming data.</td>
</tr>
<tr>
<td>Solution Only</td>
<td>A dataset must already be present. The existing dataset is reduced to contain the same number of zones as there are grids in each incoming solution file. Solution variables in the first solution file replace the solution variables in the original zones. Subsequent solution files create new sets of zones with spatial variables shared with the first set of zones.</td>
<td>Same as "Not Appending" except original dataset is preserved. Existing dataset must have at least as many variables as the number contained in incoming solution file. Spatial variables are shared with last n original zones where n is the number of grids in each incoming solution file.</td>
</tr>
</tbody>
</table>

You may also load function files with or without grid or solution files. If you load function files at the same time as solution files, there must be an equal number of solution files and function files. The variables in each function file will be added to the variables in the corresponding solution file. If you load only function files, you must append the files, and the function files must contain the same number of zones as have already been loaded. In this case, the variables in the specified function files will be added to the zones defined in the previously-loaded solution file(s).

4- 17.2 PLOT3D Loader Limitations
The -ip, -jp, -kp options in older PLOT3D Loaders are not supported in this release. Tecplot 360 EX handles I, J, and K-planes well, so loading 3D planar files as a single zone is typically sufficient. Refer to section 7 - 1.2 "Surfaces" for additional information.
4- 17.3 PLOT3D File Structure

The File Structure page of the PLOT3D Loader dialog allows you to choose to have the PLOT3D Loader auto detect the file structure, or override and manually describe the structure.

The PLOT3D Loader can automatically detect most PLOT3D file variants. ASCII files are the most difficult to auto-detect as there are a few combinations that have the exact same signature. Pure binary files also have some combinations that have the same signature. You may also specify the file format manually.

To enhance performance when loading multiple solution/function files, the primary solution/function file can be chosen to represent the structure of all subsequent files. To activate this option, toggle-on "Assume all Solution/Function Files have the same structure". You must determine if this is appropriate.

Special File Conditions

Unstructured Data Files

The following ASCII file conditions require special attention:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Precision</td>
<td>You must tell the loader if the incoming file is single or double precision.</td>
</tr>
<tr>
<td>I-Blanking</td>
<td>You must tell the loader if the incoming file contains I-blanking.</td>
</tr>
<tr>
<td>3D Planar</td>
<td>There are some cases where these files can appear exactly the same if they are 3D Whole. The PLOT3D loader always favors 3D Whole. If you need to load 3D Planar in 3D Planar ASCII files you must specify the data structure manually.</td>
</tr>
</tbody>
</table>

Pure Binary Files

The following pure binary files (binary files without record markers) require special attention:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Planar</td>
<td>There are some cases where these files can appear exactly the same if they are 3D Whole. The PLOT3D loader always favors 3D Whole. If you need to load in 3D Planar pure binary files you must specify the data structure manually.</td>
</tr>
</tbody>
</table>
4- 17.4 PLOT3D Data Subsets

The Data Subset page of the PLOT3D Loader allows you to: read subsets of ordered zones within the files, specify the desired beginning and ending index values to read, and enter a skip value for each index direction. A skip value of one results in every value in the specified index range being read. A skip of 2 reads every second value, and so on.

4- 17.5 Macro Language Commands for the Plot3D Loader

The macro language syntax for the PLOT3D Loader has had some changes over the years. Layouts created with older syntax can still be read, but will be saved with the latest syntax.

The syntax for loading PLOT3D data files with the Tecplot macro language is as follows:

```$!READDATASET
  "STANDARDSYNTAX" "1.0"
  "...any of the name value pairs in the following table..."
  "DATASETREADER = "PLOT3D Loader"
```

Each name/value pair should be in double quotes:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value(s)</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARDSYNTAX</td>
<td>1.0</td>
<td>n/a</td>
<td>Must be the first instruction.</td>
</tr>
<tr>
<td>FILELIST_FUNCTIONFILES</td>
<td>"n" "file-1" "file-2"... "file-n"</td>
<td>n/a</td>
<td>Specify the number of function files, followed by each file name.</td>
</tr>
<tr>
<td>FILELIST_SOLUTIONFILES</td>
<td>"n" "file-1" "file-2"... "file-n"</td>
<td>n/a</td>
<td>Specify the number of solution files, followed by each file name.</td>
</tr>
<tr>
<td>FILELIST_GRIDFILES</td>
<td>"n" "file-1" "file-2"... "file-n"</td>
<td>n/a</td>
<td>Specify the number of grid files, followed by each file name.</td>
</tr>
<tr>
<td>FILENAME_NAMEFILE</td>
<td>"filename"</td>
<td>n/a</td>
<td>The associated name file.</td>
</tr>
</tbody>
</table>
Loading Data

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value(s)</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEXRANGE</td>
<td>"Min, Max, Skip"</td>
<td>all</td>
<td>The index ranges for the data to be loaded, minimum, maximum, and skip value.</td>
</tr>
<tr>
<td>INDEXRANGE</td>
<td>"Min, Max, Skip"</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>INDEXRANGE</td>
<td>"Min, Max, Skip"</td>
<td>all</td>
<td></td>
</tr>
<tr>
<td>APPEND</td>
<td>"Yes" or "No"</td>
<td>"No"</td>
<td>Whether to append the read data to the existing dataset.</td>
</tr>
<tr>
<td>ASCIIDOUBLE</td>
<td>"Yes" or "No"</td>
<td>"No"</td>
<td>Whether the ASCII data format is double.</td>
</tr>
<tr>
<td>ASCIIHASBLANK</td>
<td>"Yes" or "No"</td>
<td>"No"</td>
<td>Whether the ASCII file contains blanks.</td>
</tr>
<tr>
<td>AUTODETECT</td>
<td>"Yes" or "No"</td>
<td></td>
<td>Whether to autodetect the PLOT3D file format variant. If set to "No," the DATASTRUCTURE, ISMULTIGRID, and STYLE keywords are used to specify the file format.</td>
</tr>
<tr>
<td>DATASTRUCTURE</td>
<td>"1D", "2D", "3DP", "3DW", or "UNSTRUCTURED"</td>
<td>none</td>
<td>Required if AUTODETECT is "No," otherwise ignored.</td>
</tr>
<tr>
<td>ISMULTIGRID</td>
<td>"Yes" or "No"</td>
<td>none</td>
<td>Required if AUTODETECT is "No," otherwise ignored.</td>
</tr>
<tr>
<td>STYLE</td>
<td>"PLOT3DCLSIC" or "PLOT3DFUNCTION" or "OVERFLOW"</td>
<td>none</td>
<td>Required if AUTODETECT is "No," otherwise ignored.</td>
</tr>
<tr>
<td>ASSIGNSTRANDS</td>
<td>"Yes" or "No"</td>
<td>"No"</td>
<td>Whether to automatically assign strand IDs.</td>
</tr>
<tr>
<td>ADDTOEXISTINGSTRANDS</td>
<td>"Yes" or "No"</td>
<td>"No"</td>
<td>Whether to add data to existing strands.</td>
</tr>
<tr>
<td>UNIFORMGRIDSTRUCTURE</td>
<td>"Yes" or "No"</td>
<td>"Yes"</td>
<td>Whether the grid structure is the same for all time steps.</td>
</tr>
<tr>
<td>SOLUTIONSSHARESTRUCTURE</td>
<td>"Yes" or "No"</td>
<td>"No"</td>
<td>When loading multiple files whether the primary solution file represents the structure of all subsequent files. Will improve performance.</td>
</tr>
</tbody>
</table>
The following auxiliary data is created by the PLOT3D Loader:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDFUNCTIONVARIABLS</td>
<td>"Yes" or "No"</td>
<td>Whether to append variables in function files to those found in solution files.</td>
</tr>
<tr>
<td>EXTRACTTIMEFROMSOLFILENAME</td>
<td>"Yes" or "No"</td>
<td>Deprecated. If set to Yes, solution times will always be extracted from filenames, overriding solution times in the data set. If set to No or not given, solution times will still be extracted from filenames if the data set contains does not contain solution times or if the data set contains more than one time step specifying the same solution time.</td>
</tr>
</tbody>
</table>

4- 17.6 PLOT3D Auxiliary Data

The following auxiliary data is created by the PLOT3D Loader:

<table>
<thead>
<tr>
<th>Auxiliary Name</th>
<th>Assigned To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common.ReferenceMachNumber</td>
<td>Dataset and Individual Zones</td>
</tr>
<tr>
<td>Common.AngleOfAttack</td>
<td>Dataset and Individual Zones</td>
</tr>
<tr>
<td>Common.ReynoldsNumber</td>
<td>Dataset and Individual Zones</td>
</tr>
<tr>
<td>Common.IsBoundaryZone</td>
<td>Individual Zones</td>
</tr>
<tr>
<td>Common.BoundaryCondition</td>
<td>Individual Zones</td>
</tr>
<tr>
<td>Common.DensityVar</td>
<td>Dataset</td>
</tr>
<tr>
<td>Common.UVar</td>
<td>Dataset</td>
</tr>
<tr>
<td>Common.VVar</td>
<td>Dataset</td>
</tr>
<tr>
<td>Common.WVar</td>
<td>Dataset</td>
</tr>
<tr>
<td>Common.StagnationEnergyVar</td>
<td>Dataset</td>
</tr>
<tr>
<td>Common.GammaVar</td>
<td>Dataset</td>
</tr>
<tr>
<td>Common.TurbulentKineticEnergyVar</td>
<td>Dataset</td>
</tr>
<tr>
<td>Common.TurbulentDissipationRateVar</td>
<td>Dataset</td>
</tr>
<tr>
<td>Common.VectorVarsAreVelocity</td>
<td>Dataset</td>
</tr>
<tr>
<td>Common.SpeedOfSound</td>
<td>Dataset</td>
</tr>
<tr>
<td>G^2</td>
<td>Individual Zones</td>
</tr>
<tr>
<td>P^+</td>
<td>Individual Zones</td>
</tr>
<tr>
<td>T^+</td>
<td>Individual Zones</td>
</tr>
<tr>
<td>H^+</td>
<td>Individual Zones</td>
</tr>
</tbody>
</table>
4 - 18 PLY Loader

Use this loader to load 3D triangular surface files with the .ply extension. This format is often used to store surfaces generated from tessellation of 3D range measurement data. Files may be either ASCII or binary, but must contain both vertex and face elements (sections). This loader is included in your Tecplot 360 EX installation.

4 - 19 Tecplot-Format Loader

This section describes the process for loading Tecplot-format data files with the extensions .dat for ASCII files and .plt for binary files. Some other products that write Tecplot binary files use the filename extension .bin or .tec, and these are also recognized by the Tecplot-Format loader. (Refer to the Data Format Guide for information on outputting data into Tecplot 360 EX file format.)

There are four ways to create and work with Tecplot-format data files:

• **Generate a Tecplot-format ASCII data file** - Read the file into Tecplot 360 EX and work without conversion. If the dataset is altered, save it as an ASCII data file. This method works well for smaller datasets where the convenience of an ASCII file outweighs any inefficiencies.

• **Generate a Tecplot-format ASCII data file and convert it to a binary file with Tecplot 360 EX** - Read it into Tecplot 360 EX, then save it as a binary data file, then work with the binary file. Once you have saved a binary version, you can delete the ASCII version. This works well for large datasets where ASCII inefficiencies are noticeable. See Section 23 - 2 “Data File Writing”.

• **Generate a Tecplot-format ASCII data file, then convert it to a binary file with Preplot** - Preplot, a utility program included with Tecplot 360 EX, converts ASCII and PLOT3D to binary Tecplot-format data files. Once the binary file is created, delete the ASCII version to save space. This works well for identifying problems with data files, since Preplot's error messages include precise details. This method also works well in batch processing, or if the ASCII data files are generated on another machine. (See the Data Format Guide for a description of Preplot.)

• **Generate a Tecplot-format binary data file** - Read the binary data file into Tecplot 360 EX and work without conversion. You must use routines provided by Tecplot as part of the TecIO library to write Tecplot-format binary files from C or FORTRAN programs. (See the Data Format Guide for complete details.)

See also Section 4 - 20 “Tecplot Subzone Loader” for information on loading the newer subzone file format (.szplt), which is optimized for working interactively with larger files. It is straightforward for developers to upgrade software that writes Tecplot binary files using the TecIO library to write subzone files.

1. Copyright for Third Party Library. This loader utilizes a modified version of a library written by Greg Turk while at Stanford University. The copyright for this library is: Copyright © 1994 The Board of Trustees of The Leland Stanford Junior University. All rights reserved. Permission to use, copy, modify and distribute this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice and this permission notice appear in all copies of this software and that you do not sell the software. The software is provided "as is" and without warranty of any kind, express, implied or otherwise, including without limitation, any warranty of merchantability or fitness for a particular purpose.
4 - 19.1 Tecplot Data File Loading

The Tecplot Data Loader (accessed via File>Load Data) allows you to load ASCII (.dat) and binary (.plt) Tecplot-format data files. For both kinds of files, Tecplot 360 EX supports full data files, grid files, and solution files, where the file types are defined as follows:

- **Full** - Full files contain both grid and solution data. Data files produced for Tecplot 360 Version 2006 and earlier are treated as full data files. Full files can be loaded in any order.
- **Grid** - Grid files contain static data for all zones. They have at least one variable or FE connectivity; they may contain both variables and connectivity simultaneously.
- **Solution** - Solution files contain time-varying data for all zones in the file.

You may load more than one Tecplot format file at a time by selecting multiple files in the Load Data dialog. In fact, this is required when loading solution data because the corresponding grid file must be loaded at the same time.

Loading Grid and Solution Data Files

When you are loading grid and/or solution files, please keep the following in mind:

- Each solution file must be read after the grid file it is associated with has been loaded.
- If you load multiple grid and solution files into Tecplot 360 EX, the order the files are listed will be used to determine which grid is used for which solution file(s). For example, if you load a set of grid and solution files in the following order:
 - Grid A
 - Solution A
 - Solution B
 - Solution C
 - Grid B
 - Solution D
 Grid A will be shared for Solution Files A, B, and C. Grid B will be used for Solution File D.

- You may load a grid file with variables or variables and connectivity without loading a solution file. However, you may not load a grid file that contains only FE connectivity data.

4 - 20 Tecplot Subzone Loader

The Subzone Loader (SZL or “Sizzle”) allows you to visualize large data files on typical engineering workstations by loading only the data required for a particular operation. Unlike the previous load-on-demand capability, Subzone Load can load partial zones instead of entire zones. This capability requires a new file format, .szplt, which can be loaded using the Tecplot Subzone Loader.

Data can be converted to the .szplt format manually, by loading it into Tecplot 360 EX and then writing it in SZL format (see Section 23 - 2 “Data File Writing”). For information on batch-converting files to SZL format, see Section 27 - 5 “Batch Converting to SZL Format”.

The Tecplot Subzone Loader is used for loading .szplt files stored on your local disk or on a standard network share (that is, a share that is supported by your computer’s operating system). To load files from a
Loading Data

Linux remote host on which the Tecplot SZL Server is installed, see Section 4 - 25 “Loading Remote Data using the Tecplot SZL Server”.

4 - 21 Tecplot Layout Loader

The Tecplot Layout loader is used for loading Tecplot layouts (.lay) and layout packages (.lpk). Layouts include only links to the original data files; layout packages include the subset of data needed to view the layout. See Section 23 - 1 “Layout Files, Layout Package Files, Stylesheets” on page 391 for more details on creating these files.

Usually it is most convenient to load these kinds of files using the Welcome screen, the File>Open Layout or File>Recent Layouts commands, or double-clicking the file in your file manager (e.g. Windows Explorer). However, you can also load layouts and layout packages by choosing File>Load Data and selecting this loader in the Load Data dialog.

This loader has no options; simply choose the desired .lay or .lpk file, and it will be opened.

4 - 22 Text Spreadsheet Loader

The Text Spreadsheet Loader add-on allows you import simple data from ASCII files. Select the delimiter and I-skip (if necessary) from the Simple Spreadsheet File Loader dialog.

The Text Spreadsheet Loader dialog has the following options:

- **Filename** - Enter the path to the file you would like to load.
- **Delimiter** - Choose whether your data is separated by a comma, space, or tab.
- **I-Skip** - Select an I-skip value. A value of 1 loads all values, a value of 2 loads every other value, and so on.

The Text Spreadsheet Loader can read ASCII files of the following format (blank lines are ignored):

```
Variable 1, Variable 2, ..., Variable N
datapoint1,datapoint2, ..., datapoint N
...

Month, Rainfall
1, 15.0
2, 21.0
3, 21.0
4, 32.0
5, 10.3
```

Here is an example of a valid ASCII spreadsheet file:
TRIX Loader

The TRIX Data Loader loads TRIX files, which have the filename extension .trix. TRIX is an XML-based unstructured file format used by Cart3D and related solvers and is a subset of the Visualization Toolkit VTU format. Only triangle surface data can be loaded. The TRIX loader has no advanced options and can load only one file at a time.

VTK Data Loader

The VTK Data Loader loads unstructured VTK (Visualization Toolkit) files which have the filename extension .vtu. The VTU format is an XML-based format used by solvers. The loader is designed to work with ASCII, inline-binary, and appended formats with "raw" or "base64" encoding and either big or little-endian byte ordering, with or without ZLib compression. The supported VTK cell types are Vertex, Line, Triangle, Pixel, Quad, Tetra, Voxel, Hexahedron, Wedge, and Pyramid. These types are loaded into Tecplot 360 EX as ordered-point, FE-Lineseg, FE-Triangle, FE-Quad, FE-Tetra, and FE-Brick data. The VTK loader has no advanced options dialog but does provide advanced options that can be set via the macro language by augmenting the VTK Data Loader instructions in the $!READDATASET command of a layout or macro file.

Multiple VTU files can loaded at one time or appended to an existing dataset. Multiple VTU files loaded at one time must all have the same number of variables (VTK DataArray elements) and the same variable names in the same order.

The VTK Data Loader can also load .pvtu and .vtm files. A .pvtu file is a parallel VTU file that references one or more VTK data files and assembles them together to form a single zone, one for each .pvtu file. A .vtm file is a multi-block file that references one or more VTK data files and assembles them into multiple zones, one for each data file referenced.

The VTK Data Loader will read the <FieldData> section of the files and add any scalars it finds there to the zone's auxiliary data. If all of the files have a scalar named "time" in the <FieldData> section, the loader can use the "time" scalar variable for the zone's solution time. If the loader is instructed to use the "time" scalar for solution time, it will not add the "time" scalar to the zone's auxiliary data. The VTK loader can optionally detect a consistent pattern of incrementing numeric values in the names of the files themselves and use them for the zone's solution time. If the loader cannot follow the instruction it is given, because not all of the files have the "time" scalar or because there is no consistent pattern of values in the filenames, it will not assign a solution time or strand ID.

To tell the loader how to assign solution times, add the name/value pair "SOLUTIONTIMESOURCE" <setting> to the loader instructions. The settings are listed below.

Macro Language Commands for the VTK Data Loader

The syntax for loading VTU data files with the Tecplot macro language is through the $!READDATASET command as follows:

4 - 23 TRIX Loader

4 - 24 VTK Data Loader

Text Spreadsheet Loader Limitation

The first line must contain all of the variable names.

<table>
<thead>
<tr>
<th>6</th>
<th>5.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2.3</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>1.4</td>
</tr>
<tr>
<td>10</td>
<td>8.3</td>
</tr>
<tr>
<td>11</td>
<td>12.2</td>
</tr>
<tr>
<td>12</td>
<td>15.4</td>
</tr>
</tbody>
</table>

Loading Data

```
$!READDATASET
"STANDARDSYNTAX" "1.0" "...one or more VTK Data Loader instructions..."

DATASETREADER = "VTK Data Loader"
```

The VTK DATA Loader instructions are in name/value pairs and each name/value pair should be independently surrounded by double quotes. Refer to the Scripting Guide for details on working with the Tecplot macro language.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value(s)</th>
<th>Default</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARDSYNTAX</td>
<td>"1.0"</td>
<td>t/a</td>
<td>Must be the first instruction.</td>
</tr>
<tr>
<td>FILENAME_FILE</td>
<td>"filename"</td>
<td>t/a</td>
<td>Specify a single file name.</td>
</tr>
<tr>
<td>FILELIST_DATAFILES</td>
<td>n" file-1" file-2"... file-n"</td>
<td>t/a</td>
<td>Specify the number of solution files, followed by each file name.</td>
</tr>
<tr>
<td>SOLUTIONTIMESOURCE</td>
<td>"FromFieldData", "FromFilename", "Auto", "None"</td>
<td>"Auto"</td>
<td>Select one solution time source: "Auto", "FromFieldData": Uses the "time" scalar for solution time over the numbers embedded in file names, "FromFilename": Uses the solution time embedded in the file names, "Auto": Favors the "time" scalar for the solution time over the numbers embedded in file names, "None": Does not assign solution time or Strand ID, "FromFieldData": Uses the "time" scalar for solution time, "FromFilename": Uses the solution time embedded in the file names.</td>
</tr>
</tbody>
</table>

4 - 25 Loading Remote Data using the Tecplot SZL Server

The Tecplot SZL Server is a lightweight server that you can install on a remote Linux host (such as a computer cluster) to get access to your data when it is not practical to move the data off the cluster to a local drive or to a network file share, and when you cannot reasonably run Tecplot 360 EX on the remote host using a remote desktop setup. Usually this is due to slower network speeds between the remote host and the visualization workstation.

The Tecplot SZL Server runs only on Linux hosts and serves only SZL data, since it is the subzone loading capability of the SZL format that makes it practical to visualize your data over slower connections. Clients can be any platform supported by Tecplot 360 EX.
Loading Remote Data using the Tecplot SZL Server

You can load SZL data from a remote host using Tecplot SZL Server using the Load Remote Data command on the Tecplot 360 EX File menu. Choose Load Remote Data command on the Tecplot 360 EX File menu to open the Remote Data Load Options dialog.

![Remote Data Load Options dialog](image)

The first time you use Load Remote Data on Windows, Windows may display a dialog asking you to allow Tecplot 360 EX to listen for connections. You must grant this permission to allow Tecplot 360 EX to load remote data.

The Remote Data Load Options dialog offers three ways to connect to the remote SZL Server:

- **SSH Tunneled Connection** - Uses a secure shell (SSH) connection to carry the data from the server to the workstation so it can be visualized in Tecplot 360 EX. As long as you can connect to the remote host via SSH, you can visualize data from a SZL Server running on that host; the SSH connection is all that is needed. This minimizes any possible network and workstation complications.
- **Direct Connection** - May offer better performance than a SSH tunnel, but with less security, because the data is not encrypted. (A SSH connection still must be established to start the server, but the actual data is sent to the workstation without encryption.) The remote host must be able to establish a connection to arbitrary ports on the visualization workstation, which may require setup from a network administrator or may even be disallowed entirely at your site.
 You might use Direct Connection mode if your network is already secure (for example, when using a VPN or WAN) and the encryption provided by SSH would be redundant, or if performance is paramount.
- **Manual Connection** - This mode allows you to establish a SZL Server session by manually issuing a command on the remote host. Each time you establish a manual connection, Tecplot 360 EX provides you with an appropriate command that can be used for this purpose.
 By default, the SZL Server connection is made directly from the remote host to the workstation as in Direct Connection mode described above. However, you can also establish an SSH tunnel manually and run your SZL Server session through it. See “Manual Connection Mode” on page 125 for details.

If you are using either of the first two modes, choose it in the dialog, then specify:

- The hostname or IP address of the remote host
- Your username on that host
- How you wish Tecplot 360 EX to authenticate to the remote host, using one of these options:
Loading Data

- Your private key file (specify the file by entering the path or by clicking "..."). If your key is protected by a passphrase, enter it in the field provided.
- A key manager: ssh-agent (or PuTTY's Pageant utility on Windows).
- Without a key (you will be prompted for a password when you connect)

Then click the Connect button to establish the connection. This may take a few seconds.

If you are using Manual Connection mode, you will instead see a small window indicating the command you must execute on the remote host to establish the connection. See “Manual Connection Mode” on page 125 for details on using this mode.

Once the connection has been established, the Select Files button becomes enabled. Click Select Files to choose a file to open. The Select File dialog appears.

All remote files open at any one time must be opened from the same directory on the same remote host. You cannot append data using remote files.

After you choose the files you wish to open and click Open, you return to the Load Remote Data dialog with those files listed in the bottom panel. Click OK to proceed with opening the files. Tecplot 360 EX opens the files and displays the initial plot.
4 - 25.1 **Manual Connection Mode**

In Manual Connection mode, you establish an SSH connection to the remote host yourself, then start the server and tell it how to connect back to the Tecplot 360 EX client running on your workstation. This is useful for unusual network configurations and for those who require complete control.

When you click **Connect** in the Remote Data Load options with the mode set to Manual Connection, Tecplot 360 EX displays the Waiting For Server Connection dialog. This dialog remains open until you establish the connection from the remote host. To do this, you must issue a command on the host to start the SZL Server and tell it how to connect to Tecplot 360 EX on the client workstation.

The `szlserver` command shown in the dialog can be copied and pasted into your remote command line session (established with the `ssh` command on Linux or Mac OS X, or a GUI client like PuTTY on Windows). Usually, you will establish a new SSH connection, but it is possible to use an existing one (see the Note at the end of this section). For this example, we will establish a new connection.

When invoked using the provided `szlserver` command, the SZL Server establishes a direct, unencrypted connection to the workstation (as in Direct Connection mode). This requires that arbitrary ports on your workstation be accessible from the server, which may require network administrator support or be disallowed entirely at your site.

If it is not possible for the server to connect to the workstation, or if you wish the session to be encrypted, you can manually tunnel the connection over an SSH connection. You will need to know the port number on which Tecplot 360 EX is waiting for the connection. This is the number following the `-p` flag in the `szlserver` command shown in the Waiting For Server Connection dialog.

You should note the session key, which is the number following `-k`. The session key is a random number that is changed for each connection; it is used to verify that the connection is being made to the correct workstation. When you issue the `szlserver` command on the remote host, you must use the session key displayed in the Waiting For Server Connection dialog.

In the example dialog shown here, Tecplot 360 EX is listening on port 49767. So you need to establish a tunnel from port 49767 on the remote host to port 49767 on your workstation.

On Linux or Mac OS X systems, you can create the tunnel using the `-R` option with the `ssh` command line client. In this command, `localhost` refers to the workstation running Tecplot 360 EX, the client of the `ssh` connection (the hostname is resolved on the client end).

```
ssh -R 49767:localhost:49767 username@remote.host
```
If you are using a server port number different from the workstation port, the server port number should be the first number after the `-R`. For example, if you have decided to use port 4242 for the server end of the tunnel, the ssh command would be:

```
ssh -R 4242:localhost:49767 username@remote.host
```

On Windows, you can set up port forwarding in PuTTY on the Connections > SSH > Tunnels page. Enter (in this example) 49767 for the source port, localhost:49767 as the destination, and choose the Remote radio button. (If you are using a different port number on the server than on the workstation, it goes in the Source Port field.) Then click Add to add the tunnel to the forwarded ports list. When you click Open to establish the SSH connection, the tunnel is created along with it.

One you have established an SSH connection with the remote host, incorporating a tunnel, you can issue the szlserv command on the remote host. However, instead of specifying the address of the client workstation after `-m`, specify localhost. This will instruct the SZL Server to connect to the host’s end of the tunnel, which will forward the connection to the workstation.

```
szlserv -m localhost -p 49767 -k 1443248310
```

If you are using a different port number on the remote host, specify this after `-p`. For example, if you are using port 4242 for the remote end of the tunnel, use:

```
szlserv -m localhost -p 4242 -k 1443248310
```

On Windows, PuTTY lets you add tunnels to an existing connection. Simply click the icon in your SSH terminal’s upper left corner, choose Change Settings from the menu, and navigate to Connection>SSH>Tunnels as if you were setting up a new connection. From there, you can remove any obsolete port forwarding and add new tunnels as needed.

On Linux and Mac OS X, you can type `~C` to escape into a mini command line from an established session, then enter an `-R` option exactly as you would on the command line to set up a port forward (e.g. `-R 49767:localhost:49767`). To cancel an existing tunnel, enter `-KR 49767` (for example) using the remote port number of the tunnel. Press Enter to exit the mini command line and return to your SSH session.

This feature may not be available depending on SSH client configuration. If it is not available, simply open a new terminal window and establish a new SSH connection incorporating the desired tunnelling.
4 - 25.2 Interactive Authentication and Unattended Operation

Depending on your organization's network and security policies, you might need to enter information to prove your identity when connecting to a SZL Server via SSH. This information might include:

- An account password, if you are not using a key pair
- A passphrase for a protected private key or key store
- A security code from an authentication token or app (such as Google Authenticator)

Or, if you are using Manual Connection mode, you must enter a command on the remote host in order to establish the connection.

Tecplot 360 EX prompts you to enter any necessary authentication information or take other action to establish the connection to the SZL Server as necessary. When running Tecplot 360 EX interactively—with its full graphical user interface—a dialog appears to request your password or to ask you to perform other steps.

When you record a connection to a SZL Server in a macro, the most that is ever stored in the macro is the path to your private key file. The key itself and its passphrase are never stored; likewise, if you are using password authentication, the password is not stored. Therefore, for batch operations—such as running a macro from the command line—the Linux and Mac OS X versions of Tecplot 360 EX will prompt you to enter this information in the terminal window if it is necessary.

Similarly, the macro file does not store any manual steps you do when establishing a connection via Manual mode, because these steps are done outside Tecplot 360 EX. So when connecting via the Manual connection mode in batch mode, you will be instructed in the terminal to establish the connection, and Tecplot 360 EX will wait for the connection to be established.

The Windows version of Tecplot 360 EX detaches from the text console and cannot read or write to the command line window. Therefore, the $!READDATASET macro instruction fails in batch mode on Windows if any additional information or action is needed to connect to the remote host. (The file batch.log will include an error message in this case.) You must use Tecplot 360 EX in interactive mode to be able to open such data sets on Windows.

True unattended operation requires use of the SSH Tunneled or Direct Connection modes with SSH key pairs without passphrases or other interactive requirements. In this case, all platforms can access the data files in batch mode without difficulty.

4 - 26 Overwriting Data Files

Tecplot 360 EX employs load-on-demand to allow you to start working with your data as soon as possible. With load-on-demand, after you load a data file, the actual loading of individual variables may be deferred until the variables are actually needed. Depending on available memory, some variables may even be loaded, then unloaded, and then loaded again.

Load-on-demand requires that Tecplot 360 EX keep the data file(s) being used open while you are using them to create plots, which may present problems if you need to update the data files during this time.

If you have a workflow that requires a Tecplot 360 EX data file be overwritten while it is in use (most likely to simulate real-time data acquisition or a similar process), the following is suggested as a possible solution.
In this example, the cycle on the top illustrates the method used for Tecplot 360 EX to update flow.plt and the cycle on the bottom illustrates the method used by the application that generates the data to update flow.plt. Both systems are checking for the existence of read.lock. If you are using a macro in Tecplot 360 EX to do this, then you can use the extended macro command, query.fileexists, to determine if the file exists. If the file exists, Tecplot 360 EX will disconnect from flow.plt, copy flownew.plt to flow.plt, and delete read.lock. If read.lock exists and the application that generates the data has an update for flow.plt, the application should either wait a few seconds and try-again or skip the data set (this is determined by the application, not Tecplot 360 EX). If the file does not exist, the application that generated the data is free to copy new data to flownew.plt. If you use a macro in Tecplot 360 EX, you can use the capabilities of extendmcr to query for file existence. Disconnecting from flow.plt can be done in a number of ways, one of which is to issue a $!NEWLAYOUT command. This will completely disconnect Tecplot 360 EX from the dataset and thus from the associated data file.

The file read.lock is like a baton. If it exists, then flownew.plt is said to be "owned" by Tecplot 360 EX. If it does not exist, then flownew.plt is said to be "owned" by the data producing application. flow.plt is always owned by Tecplot 360 EX.

One minor issue not addressed in the above example is what the data producing application should do if the data is being read by Tecplot 360 EX. It can either block (wait) until Tecplot 360 EX is finished or discard the current solution and go back to generating another one.
Part 3 Creating
Plots
Creating Plots

5 - 1 Creating Plots

The basic steps for creating a plot in Tecplot 360 EX are:

1. Define your dataset using one of the following methods:
 a. Use the Load Data command from the File menu. Please refer to Chapter 4: “Loading Data” for information on working with a specific data loader.
 b. Use the “Open Layout” command from the File menu to load linked layout or layout package files. (See Section 23 - 1 “Layout Files, Layout Package Files, Stylesheets” for more information on layout files.)
 c. Use any combination of the options in the Create Zone submenu of the Data menu or the Insert menu to create your datasets directly within Tecplot 360 EX. Section 20 - 5 “Zone Creation” and Chapter 18: “Text, Geometries, and Images” for more information.

2. Select the Plot Type (3D, 2D, XY Line, Polar Line, or Sketch) from the Plot sidebar. Refer to Chapter 7: “Field Plots” for information regarding 3D and 2D plots, Chapter 6: “XY and Polar Line Plots” for information on XY Line and Polar Line plots, and Chapter 18: “Text, Geometries, and Images” for information on sketch plots.

3. Toggle-on any mapping or zone layers from the Plot sidebar. The following mapping and zone layers are available:
 - Mesh Layer
 - Contour Layer
 - Shade Layer
 - Vector Layer
 - Scatter Layer
 - Edge Layer
 - Line Map Layer
 - Symbols Map Layer
 - XY Line Error Bars
 - XY Line Bar Charts
Creating Plots

The layers available in the Plot sidebar are dependent upon the active plot type. Use the Details buttons where available to customize zone layers.

In order to view surfaces on your plot, open the Zone Style dialog, select the Surfaces tab, and use the [Surfaces to Plot] drop-down menu to choose an available surface plotting option.

The Zone Style dialog is available by either double-clicking on your plot, selecting the [Zone Style] button from the Plot sidebar, or selecting Plot>Zone Style from the Menu bar.

4. Use the options in the Plot menu (such as Blanking or Axis) to customize how your data is displayed. Refer to Section 7 - 4 “Three-dimensional Plot Control” or Chapter 15: “Axes” for additional information.

5. Use the options in the Data menu (such as Alter>Specify Equations or Interpolate) to alter the dataset. Refer to Chapter 20: “Data Operations” and Chapter 21: “CFD Data Analysis” for additional information.

6. [3D only] toggle-on zone effects (translucency and lighting). Refer to Chapter 13: “Translucency and Lighting” for details.

7. Use the Zone Style or Mapping Style dialogs to opt zones in and out of plot layers or the entire plot. Refer to Section 7 - 1 “Field Plot Modification and the Zone Style Dialog” and Section 6 - 1 “Mapping Style and Creation”, respectively, for details.

8. [2D or 3D only] add derived objects (Slices, Streamtraces or iso-surfaces). Use their respective Details buttons [...] to customize any derived objects.

You are not limited to working with only one plot at a time. You can create multiple plots on a single page using frames and frame linking, and you can create multiple pages. See Section 2 - 3 “Frames” for more information.

5 - 2 Data Journaling

On occasion you may modify data prior to making a final plot. Some (but not all) of the data operations mentioned in this chapter modify data. Tecplot 360 EX “journals” the data modifications you make in the form of macro instructions as well as performing them. If you then save a layout file, the layout file can reference the original data and include the instructions necessary to reconstruct the plot. This way, the original data file is not modified. You can also generate a new plot using a different data file by reusing the layout. (Layout files are text files and may be modified in an editor.)

If you perform an operation that Tecplot 360 EX is unable to journal, you are prompted to save the dataset to a new file when you save a layout file. This is necessary for the layout to reproduce exactly what you have in your plot.

The following operations are included in the data journal:

- Data alteration except for derivatives in equations.
- Creation of rectangular zones, circular zones, and 1D zones.
- Zone duplication.
- Zone deletion.

5 - 3 Data Sharing

In order to conserve computer memory and disk space, Tecplot 360 EX shares variables between zones whenever possible. Variable sharing typically occurs with any of the following scenarios:

132
When a variable is calculated for two or more zones, Tecplot 360 EX determines if the results will be the same in the different zones, and shares the variable where appropriate. See Section 20-1.1 “Equation Syntax” and Section 20-1.6 “Variable Sharing Between Zones”.

When zones are duplicated, all variables are shared between the source zones and their duplicates. See Section 20-5.3 “Zone Duplication”.

When mirrored zones are created, the mirrored zone shares all variables with the original. See Section 20-5.4 “Mirror Zone Creation”.

When a data loader supporting data sharing (Tecplot, Plot3D, FLUENT, CGNS, etc.) loads a variable that is identified for two or more zones, that variable is shared among the specified zones. This often occurs with time dependent data, where the physical coordinates (e.g. X, Y, and Z) are typically the same for all time steps.

Variable sharing and connectivity sharing (for finite element zones) can also be established in a Tecplot data file by supplying the appropriate parameters to the TECZNE function when writing the file (see the Data Format Guide). In addition, multiple solution files can share the same grid file.

5.4 Data Set Information

The Data Set Information dialog, accessed from the “Data Set Info” option on the Data menu, gives summary information about the current dataset, including the dataset title, zone and variable names, and the minimum and maximum values of a selected variable. You can modify the dataset title, zone and variable names of any dataset.
5 - 4.1 Zone/Variable Info Page

The following information is provided on the Zone/Variable Info page:

- **Zone(s)** - Lists all zones by number, with their titles.
- **Zone Type (Ordered or FE data)** - Displays the type of zone selected in the Zone(s) listing. For ordered data, it is followed by the index values for IMax, JMax, and KMax (shown below). For finite element data, it is followed by the element type, number of points, and number of elements:
 - **Imax (ordered data)** - Displays the IMax value of the zone selected in the Zone(s) listing.
 - **JMax (ordered data)** - Displays the JMax value of the zone selected in the Zone(s) listing.
 - **KMax (ordered data)** - Displays the KMax value of the zone selected in the Zone(s) listing.
 - **Pts (finite element data)** - Displays the number of data points in the zone selected in the Zone(s) listing.
 - **Elem (finite element data)** - Displays the number of elements in the zone selected in the Zone(s) listing.
- **Solution Time** - Displays the solution time for the selected zone (see also Section 7 - 2 "Time Aware").
- **Time Strand** - Displays the strand ID for the selected zone (see also Section 7 - 2 "Time Aware").
- **Variable(s)** - Lists all variables by number, with their names.
- **Var Type** - Displays the type of data of the selected variable in the Variable(s) field.
- **Var Location** - Indicates if variables are located at nodes or cell-centers.
- **Var Status** - Use the Var Status field in the dialog to determine the status of the current variable. The variable status can indicate the variable passivity, lock state, and additional system state information.
Data Set Information

- **Var Range - Selected Zones** - Displays the Min and Max values for the selected variable in the selected zones. When working with subzone data, one or more of the values displayed may be estimates, which is indicated by (est) next to the affected values.

- **Var Range - Active Zones** - Displays the Min and Max values for the selected variable for all active zones. When working with subzone data, one or more of the values displayed may be estimates, which is indicated by (est) next to the affected values.

- **Load Variables** - If a variable was not initially loaded, “Not Loaded” will be displayed in Var Range portions of the dialog. Use the [Load Variables] button to display the Load Variable dialog, with which you can load any variables from your dataset that were not initially loaded.

Load Variable

The Load Variable dialog allows you to load variables into memory if they are not currently loaded. Choose the zone containing the variables you wish to load using the Zone menu at the top of the dialog, then select one or more variables from that zone.

- Click once to select only a single variable
- Hold the Shift key while clicking a second variable to select a contiguous range of variables
- Hold the Control key while clicking to toggle individual variables on and off
- Press Control-A to select all variables

Click the [Load] button to load the selected variables. See “Load On Demand” on page 466 for more information about this function.
5 - 4.2 Data Set Page

The Data Set page provides information about your data set, including: title, filenames, number of zones, variables, elements, and lock status.

The following information can be found on the Data Set page:

- **Data Set Title** - Enter a title for the current dataset, or edit an existing title. The default is the result of concatenating the titles specified in each Title record encountered in the data files making up the dataset.
- **Files or directories** - Lists the names and paths of all external data files making up the current dataset. Some file formats use directories as containers; these will list only the directory name.
- **Num Zones** - Number of zones in the dataset.
- **Num Vars** - Number of variables in the dataset.
- **Total Elements** - Total number of elements in the dataset.
- **Total Points** - Total number of points in the dataset.
- **Locked By** - This field will inform you if the current dataset has been locked by an add-on. Add-ons can lock a dataset which in turn prevents you from deleting zones or deleting the last frame associated with the dataset.
5 - 4.3 Aux Data Page

Auxiliary data is metadata attached to zones, datasets, or frames. Auxiliary data is added to the plot via the data file.

The Auxiliary Data page has the following information:

- **Show Auxiliary Data** - Use the drop-down to display auxiliary data for zones, datasets, frames, or names.
- **Data Name/Value** - Displays the names and values of any auxiliary data.

Refer to the Data Format Guide for information on creating Tecplot 360 EX data files that include auxiliary data.
Creating Plots

5 - 5 Color Chooser

Each attribute of your plot can be set to a different color or color type using the Color Chooser. Use the Select Color dialog to apply contour groups, a basic color palette, or RGB coloring to the selected plot attribute.

There are three types of color assignments:

- **Contour Groups** - The Contour Variables (Multi 1, 2, 3, 4, 5, 6, 7, and 8) are defined in the Contour & Multi-Coloring Details. The Contour Variables are typically used for coloring mesh, contour, vector, and scatter layers.
- **RGB Coloring** - Select RGB to use RGB coloring established in Plot>RGB Coloring>Variables/Range. RGB coloring is used to illustrate the relationship between two or three variables in your dataset, by setting R, G, and B to each of the variables.
- **Basic Color Palette** - Use the basic color palette to apply a single, constant color to a plot attribute.

For example, you can create a 3D field plot with a contour layer (with colors defined by a contour variable), an edge layer (with colors from the basic color palette), and a vector layer (with colors defined by RGB vectors).

5 - 5.1 RGB Coloring

RGB coloring occurs when Red, Green, and Blue values are supplied at each vertex. It may be used to create special flooding such as for Oil/Water/Gas or vector direction plots. RGB coloring may be used for each field plot object: zone layers, the mesh or contour layer for streamtraces or iso-surfaces, or any of the layers for slices. This affects multi-coloring for that object as well as any contour flooding. With RGB coloring, multi-colored objects such as vectors or scatter symbols have their color determined based on the RGB components of the field variables at their location. Multi-colored mesh and contour lines use the average value across the mesh line.

Exported Vector-based Files Limitation in RGB Coloring

Vector-based export files such as WMF cannot show continuous RGB flooding. Objects that use RGB flooding are reduced to contain average cell flooding where each cell is flooded a solid color based on the averages of the RGB values at each vertex. The user is warned before such output is generated.
RGB Coloring Options

If your data has only two RGB variables, or if the sum of the variables is not normalized, you can adjust the settings using the **RGB Coloring Options** dialog (accessed via Plot>RGB Coloring>Variables/Range). The **RGB Coloring Options** dialog (shown below) has the following options:

- **Mode** - You can either specify all three variables or specify two of the three variables and calculate the third. The third variable is calculated using the following formula: \(f(R)+f(G)+f(B)=1.0 \) (assuming \(f() \) is a function that maps R,G,B values into \([0,1.0]\)).

- **Variables** - Assign the variables which supply the values for the color components, as specified in the RGB Mode.

- **Variable Value Range** - By default, it is assumed that the minimum value for any of the Channel Variables is zero, the maximum is one, and the sum of the three variables is one at every point. If the sum is not normalized, you can set a new minimum and maximum. For example, if your variables sum to 100 at every point, you can enter 100 in the field for Value at Maximum Intensity.

5 - 5.2 Basic Color Palette

![Basic Color Palette](image)

Figure 5-3. The Basic Color Palette region of the Select Color dialog.

Use the Basic Color Palette to define a constant color to the selected plot attribute(s).
Creating Plots
XY and Polar Line Plots

A line plot is the simplest type of graph you can produce with Tecplot 360 EX. A typical line plot includes a dependent variable (usually the vertical axis for XY plots) and an independent variable (usually the horizontal axis for XY plots). Each line on the line plot represents one series of data points, where each data point is defined by its independent and dependent variable values. A series of data points is referred to as a mapping (or map, for short).

Tecplot 360 EX supports two types of line plots, XY plots and Polar plots. XY plots are plotted on Cartesian coordinates using X & Y as the independent and dependent variables (See Section 17 - 2 “Axis Variable Assignment”). XY plots can include line, symbols, bar and/or error bar layers. Polar plots are plotted on polar coordinates using Theta and R values. Polar plots can include line and/or symbol layers.

An example of XY and Polar Line plots is shown below.

Line plots are usually created from one-dimensional, I-ordered data. The data used for line plots must have at least two variables defined at each data point. The same number of variables must be defined at each data point.

You can also create line plots from two or three-dimensional data in the I or IJK-ordered structure, or from finite element data by selecting “XY Line” from the plot type menu in the Plot sidebar. If “XY Line” is selected, finite element data sets will be treated as I-ordered (the connectivity list is ignored), IJ-ordered datasets will be treated as a family of J-sets of I-ordered data, and IJK-ordered datasets will be treated as K-planes of J-families of lines. Use the Indices page of the Mapping Style dialog to select different ranges and skip intervals for the I, J, and K-indices. See Section 6 - 6 “I, J, and K-indices” later in this chapter for more information.
XY and Polar Line Plots

When you first create a line plot, the Create Mappings dialog appears automatically so you can choose the mappings to be created (see Section 6 - 1.2 “Mapping Creation” on page 145). Names, colors, symbol types, and line patterns are automatically assigned to each mapping. These and other line plot attributes can be changed using the pages of the Mapping Style dialog. To bring up the Mapping Style dialog, go to the Plot menu and select “Mapping Style”, or select the [Mapping Style] button on the Plot sidebar.

6 - 1 Mapping Style and Creation

Line plots are composed of the graphs of one or more pairs of variables (XY pairs in XY Line plots or Theta-R pairs in Polar Line plots). These pairs and their dependency relations are referred to as mappings. Mappings are defined for each frame; the same dataset can have a different set of mappings in each frame it is attached to.

Mappings can include any combination of the following mapping layers:

- **Lines** - Can be drawn as linear segments or curve that fit the data points.
- **Symbols** - Each data point is represented by a symbol.
- **Error Bars** (XY only) - Error bars are drawn for each data point. The error bar value is determined by a third variable.
- **Bar Charts** (XY only) - Each data point is represented by a vertical or horizontal bar.

XY Line plots can have up to five x-axes and five y-axes simultaneously. Polar Line plots can have only one Theta-axis and only one R-axis.

Open the Mapping Style dialog by clicking the Mapping Style button on the Plot sidebar to set attributes for lines and symbols and, in XY Line plots, bar charts and error bars. Initially, any linemaps selected in the workspace are selected in the Mapping Style dialog. You may also double-click a line in your plot to open the dialog with that mapping selected. You can set the style of any mapping independently of all other mappings.

You can also use the line map context menu and toolbar to change some of these settings quickly and easily by right-clicking on a line on your plot. The toolbar allows you to turn on or off the line, symbol, and error bars for the selected line map by clicking the icons. You can also adjust the attributes of these (for example, line color, symbol shape, or error variable) using drop-down menus to the right of each icon.

6 - 1.1 Mapping Definitions

Existing mappings are edited with the Plot menu’s Mapping Style dialog. From the Definitions page of the Mapping Style dialog, you can modify names, activate and deactivate mappings, assign axis variables,
assign zones, sort data points in a mapping, control the mappings appearance in the line plot legend, and assign particular X and Y-axes to XY-line plots.

Some settings are represented by checkboxes, which can be toggled on and off by clicking them. Other settings require a right-click. In general, select the mapping or mappings you want to change, then right-click the selection in the column of the setting to be edited. Most of the time this will activate a pop-up menu; in other cases, a dialog appears. You may change mappings whether they are shown on the plot or not (activated or deactivated).

- **Map Number** - Displays the number of each map. This cannot be edited.
- **Map Name** - Double-click the map name to edit it. Type Enter to complete the edit or Escape to cancel without saving the edit.
- **Show Map** - Each mapping can be opted in and out of a plot by toggling the checkbox or by right-clicking and choosing one of the following options:
 - **Activate** - Turns selected mappings on.
 - **Deactivate** - Turns selected mappings off.
 - **Show Selected Only** - Turns on selected mappings, and turns off all other mappings.
 - **Invert** - Switches the current activation settings for the selected map(s).
- **Axis Variables** - The choice of variables is the heart of the mapping. Each mapping is defined by two variables: X and Y in XY Line plots and Theta and R in Polar Line plots. You may change the variables assigned to a mapping by right-clicking or double-clicking.
- **Zone** - Each mapping uses variable values from a specified zone. If your dataset has multiple zones, specify the zone for each mapping by right-clicking or double-clicking the displayed zone name. The pop-up field chooser appears. Display a list of all zones by clicking the downward-pointing arrow next to the filter field, or start typing to display a filtered list of the zones whose name contains what you type.
- **Sort** - By default, mappings are sorted by the order in which they occur in the data file. You can change this order with the Sort option on the Definitions page of the Mapping Style dialog.
 Choose from one of the following Sort options:
 - **None** - Default behavior of sorting by the order in the data file.
 - **By Independent Variable** - Points are sorted in ascending order of the values of the independent variable.
 - **By Dependent Variable** - Points are sorted in ascending order of the values of the dependent variable.
XY and Polar Line Plots

- **By Specific Variable** - Select a variable from the Select Variable dialog. The points of the selected mappings are sorted in ascending order of the values of this variable.

Only Line Segment and Parametric Spline curve types are affected by the Sort options. Splines are always sorted by the independent variable. See Section 6 - 2.2 "Curve Types" for more information on curve types.

- **Which Axes** - XY Line plots support five X-axes (X1-X5) and five Y-axes (Y1-Y5). Newly created mappings use the X1 and Y1-axes. You can change these assignments by right-clicking. The ranges and scales for each axis are defined in the Axis Details dialog (accessed via the Plot >Axis).

![An XY Line plot using two Y-axes.](image)

By default, the X1 axis is placed at the bottom of your axis grid area, and subsequent X axes at the top. Similarly, it places axis Y1 at the left of your axis grid area and subsequent Y axes at the right. Thus, in Figure 6-4, the Seattle rainfall observations are shown along axis Y1 at the left of the axis grid area, while the error observations are shown along Y2 at the right.

You can also use multiple axes to cycle through mappings with different ranges or axis settings. You may find it convenient to assign different mappings to different axes so that you can set axis ranges, axis positions, or other axis attributes independently for each mapping.

- **Show in Legend** - By default, all active mappings appear in the line legend. However, the legend only lists mappings with identical entries once. (See Section 6 - 7 "Line Legend" for details on the Line Plot Legend.) The [Show in Legend] button has three options:
 - **Always** - The mapping appears in the legend even if the mapping is turned off (deactivated) or its entry in the table looks exactly like another mapping’s entry.
 - **Never** - The mapping never appears in the legend.
 - **Auto** - The mapping appears in the legend only when the mapping is turned on. If two mappings would result in the same entry in the legend, only one entry is shown.

- **Selection Criteria** - Enter a wildcard pattern and click **Select** to select one or more mappings based their name. In wildcard patterns, most characters match themselves, but the * and ? characters have special meaning.

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Matches any single character.</td>
</tr>
<tr>
<td>*</td>
<td>Matches any number of characters, including none.</td>
</tr>
</tbody>
</table>

Figure 6-4. An XY Line plot using two Y-axes.
6 - 1.2 Mapping Creation

To define a new mapping, select the [Create Map] button in Mapping Style dialog. The dialog also appears automatically the first time you choose the XY Line or Polar Line plot type. As shown below, the dialog is slightly different for the two plot types.

In XY Line plots, you have the following options:

- **X-axis Variable versus Y-axis Variable for One Zone (default)** - Add a single mapping with one X and one Y-variable for one zone.
- **X-axis Variable versus All Other Variables for One Zone** - Create a new set of mappings using one variable as the X-variable and each of the other variables in the zone as Y-variables.
- **Y-axis Var versus All Other Variables for One Zone** - Create a new set of mappings using one variable as the Y-variable and each of the other variables in the zone as X-variables.
- **X-axis Variable versus Y-axis Variable for All Linear Zones** - Define one map for each zone, with the specified X-axis and Y-axis variables. If you choose this option, you specify only the X-axis and Y-axis variables.

The options for polar line plots are the same as above, but with respect to the Theta-axis and R-axis variables.

Specify the mapping name and the axis variables in the bottom section of the dialog. The default name is “Map n,” where n is the number of the mapping to be created. If you are creating a mapping for one zone, you also select the zone here.

When you first load an ordered dataset, some mappings are automatically created for you. If your dataset has more than two variables, mappings are created that associate the first variable with each of the other variables for the first zone only.

Selecting variables in a 3D finite element zone may require significant time, since the variable must be loaded over the entire zone. XY and Polar line plots are best used with linear or ordered data, or with two-dimensional finite element data. The defaults used in the Create Mappings dialog favor the types of zones that yield good performance.

6 - 1.3 Mapping Names

Tecplot 360 EX automatically assigns a name to each mapping. The nature of the name depends on the type of data used to create the mapping. If your data has only one dependent variable, the default is to use the zone name for the mapping. If your data has multiple dependent variables, then the default is to use the dependent variable name for the mapping. In either case, Tecplot 360 EX assigns each mapping a special name (\&ZN\& or \&DN\& that is replaced with the zone or variable name when the name is displayed.
You can modify any mapping’s name by right-clicking the name of the mapping in the Mapping Style dialog. A small window pops up to allow you to enter a new name for the mapping, as shown here (note the default name of &DN& in our example; our data has multiple dependent variables, and the name of each is used as the mapping name).

You may add other dynamic text placeholders like &DN& to the displayed mapping name by clicking one of the options below the edit field, then clicking + (or simply double-clicking). The placeholders will be replaced with the indicated value when the name is displayed. By combining static text with these placeholders, you can construct a name in any format you like.

The placeholders available in this window are:

- **Zone name** - Adds &ZN& to the mapping name. This will be replaced with the actual name of the zone assigned to that mapping.
- **Zone number** - Adds &Z#& to the mapping name. This will be replaced with the actual number of the zone assigned to the mapping.
- **Independent variable name** - Adds &IV& to the mapping name. This will be replaced with the actual name of the independent variable assigned to that mapping.
- **Independent variable number** - Adds &I#& to the mapping name. This will be replaced with the actual number of the independent variable assigned to the mapping.
- **Dependent variable name** - Adds &DV& to the mapping name. This will be replaced with the actual name of the dependent variable assigned to that mapping.
- **Dependent variable number** - Adds &D#& to the mapping name. This will be replaced with the actual number of the dependent variable assigned to the mapping.
- **Map number** - Adds &M#& to the mapping name. This will be replaced with the actual number of the mapping.
- **X-Axis number** - Adds &X#& to the mapping name. This will be replaced with the actual number of the X-axis assigned to that mapping for XY Line plots. (This option is not available for Polar Line plots.)
- **Y-Axis number** - Adds &Y#& to the mapping name. This will be replaced with the actual number of the Y-axis assigned to that mapping for XY Line plots. (This option is not available for Polar Line plots.)

6 - 2 Line Map Layer

The Line map layer is available for both XY and polar line plots. Activate the layer by toggling-on “Lines” in the Plot sidebar. When the Lines map layer is on, the dataset is represented by a connected line for each mapping, which may be either a simple collection of line segments connecting all the data points, or a curve fitted to the original data.
6 - 2.1 Line Attributes

The Lines page of the Mapping Style dialog (accessed via the Plot sidebar or Plot>Mapping Style) is shown below.

The first two columns, Map Number and Map Name, list the mapping number and the mapping name. The Map Show field lists which mappings are currently active. These columns behave the same as the corresponding columns on the Definitions page (see "Mapping Definitions" on page 142). The remaining columns of the Lines page of the Mapping Style dialog contain specific line attributes.

- **Show Lines** - This option allows you to turn off lines for selected mappings, while keeping both the selected mappings and the Lines map layer active overall.
- **Line Color** - Set line color for line plots. Right-clicking displays the Color Chooser.
- **Line Thickness** - Set the thickness of lines. Right-clicking allows you to choose from preset line widths of 0.02, 0.10, 0.40, 0.80, or 1.50 percent, or enter any thickness using a dialog.
- **Line Pattern** - Right-click to choose line patterns for line plots.
- **Pattern Length** - Set the pattern length for patterned lines. Pattern length is measured as a percentage of the frame height for one complete cycle of the pattern.

In order for the changes made in the Lines page to be visible in your plot, the Lines mapping layer must be toggled-on in the Plot sidebar.

- **Show Lines**
- **Line Color**
- **Line Thickness**
- **Line Pattern**
- **Pattern Length**

For information on using the controls at the bottom of the Mapping Style dialog to select mappings by name, see the description of these at the end of "Mapping Definitions" on page 142.

6 - 2.2 Curve Types

Tecplot 360 EX offers a variety of curve-fits and spline fits. By specifying the curve type, you control how the data points are connected in a line (see "Line Map Layer" on page 146).

The first two columns, Map Number and Map Name, list the mapping number and the mapping name. The Map Show field lists which mappings are currently active. These columns behave the same as the corresponding columns on the Definitions page (see "Mapping Definitions" on page 142).

Set the type of curve plotted for a mapping by right-clicking the desired Curve Type entry on the Curves page of the Mapping Style dialog.
XY and Polar Line Plots

Tecplot 360 EX offers the following curve types:

- **Line Segment (No Curve-fit)** - A series of linear segments connect adjacent data points. In XY Line plots, these will be line segments.
- **Linear Fit** - A linear function is fit to the data points. In XY Line plots, this will be a straight line.
- **Polynomial Curve-fit** - A polynomial of order \(N \) is fit to the data points (where \(1 \leq N \leq 10 \), for \(N=1 \) a Linear Fit is done).
- **Exponential Curve-fit** - An exponential curve-fit that finds the best curve of the form \(Y = e^a X + c \) (equivalent to \(Y = a e^X \), where \(a = e^c \)). To use this curve type, Y-values for this variable must be all positive or all negative. If the function dependency is set to \(X = f(Y) \) all X-values must be all positive or all negative.
- **Power Curve-fit** - A power curve fit that finds the best curve of the form \(Y = e^a X + c \) (equivalent to \(Y = a X^b \), where \(a = e^c \)). To use this curve type, Y-values for this variable must be all positive or all negative; X-values must be all positive. If the function dependency is set to \(X = f(Y) \), X-values must be all positive or all negative, and the Y-values must all be positive.
- **Spline** - A smooth curve is generated that goes through every point. The spline is drawn through the data points after sorting the points into increasing values of the independent variable, resulting in a single-valued function of the independent variable. The spline may be clamped or free. With a clamped spline, you supply the derivative of the function at each end point; with a non-clamped (natural or free) spline, these derivatives are determined for you. In XY Line plots, specifying the derivative gives you control over the initial and final slopes of the curve.
- **Parametric Spline** - Creates a smooth curve as with a spline, except the assumption is that both variables are functions of the index of the data points. (For example in XY Line plot, ParaSpline fits \(x = f(i) \) and \(y = g(i) \) where \(f() \) and \(g() \) are both smooth.) No additional sorting of the points is performed; the sorting specified on the Definitions page of the Zone Style dialog is used for the order of the data points. This spline may result in a multi-valued function (of either or both axis variables).
- **Extended Curve-fit** - Uses a curve-fit supplied by an add-on. These curve-fits may be provided by Tecplot 360 EX, a third party, or written by users. The functionality of each extended curve-fit is defined by its creator.
Linear Fit, Polynomial Fit, Exponential Fit, and Power Fit are all determined by using a least squares algorithm. Examples of each curve-fit type are shown in Figure 6-5.

Figure 6-5. Tecplot 360 EX’s curve-fit types.

The Curves page also contains fields for controlling the following attributes:

- **Dependent Variable** - Right-click to choose how curve fits and splines are interpreted. Dependent Variable has no effect on mappings of the Line Segment curve type.
- **Curve Points** - Controls the number of points used to draw curve fits and splines. Right-click to choose a preset number of points or to enter your own. Raising the number of points increases the accuracy of the curve but also increases plotting time and the size of print files.
- **Curve Setting** - Displays options specific to the curve type, such as weighting for curve fits or starting derivatives for splines. Right-click to set these options.

For information on using the controls at the bottom of the Mapping Style dialog to select mappings by name, see the description of these at the end of “Mapping Definitions” on page 142.

Linear Fit

Tecplot 360 EX fits the data to a linear function using the standard least-squares algorithm. It calculates the function for which the sum of the squared differences from the data points is a minimum. For the XY Line plot type, the linear function is a straight line.
XY and Polar Line Plots

To fit a linear function to your data, right-click in the Curve Type column on the Curves page of the Mapping Style dialog and select “Linear Fit.” Then right-click in the Curve Setting column and choose Settings to display the Curve Fit Settings dialog, shown below.

- **Polynomial Order** is shown on the dialog, but should always be “1” for a linear fit. If you change this from 1, the curve type is changed to Polynomial Curve-fit.
- **To limit the points used in the mapping** select “Use Only Points Within Range”, and enter minimum and maximum values.
- **To assign a curve weighting variable**: select “Use Weighting Variable”, and select the variable from the drop-down. For more information on curve weighting, see Curve-fit Weighting Variables.

Polynomial Curve-fit

Tecplot 360 EX uses a standard least-squares algorithm to fit data to a polynomial function. You specify the order of the polynomial (from one to ten), and the polynomial for which the sum of the squared differences from the data points is a minimum is calculated.

To fit a polynomial function to your data, right-click in the Curve Type column on the Curves page of the Mapping Style dialog and select “Polynomial Fit.” Then right-click in the Curve Setting column and choose Settings. The Curve Fit Settings dialog appears.

By default, this option fits a cubic polynomial, using all the points in the mapping and weighting them equally.
• **Polynomial Order** drop-down. Select the desired polynomial order (1 to 10). An order of 2 is a quadratic polynomial, an order of 3 is a cubic polynomial, etc. If you select 1, the curve type is set to Linear Fit, as a polynomial of order 1 is a linear function. (See [Linear Fit](#).)
• To limit the points used in the mapping, select “Use Only Points Within Range”, and enter minimum and maximum values.
• To assign a curve weighting variable - Select “Use Weighting Variable”, and select the variable from the drop-down. For more information on curve weighting, see [Curve-fit Weighting Variables](#).

Exponential Curve-fit

Tecplot 360 EX fits the data to an exponential function using the standard least-squares algorithm.

The dependent-variable values must be either all positive or all negative.

For **XY plots** (where X is the independent variable): Tecplot 360 EX finds the best curve of the form:

\[Y = e^{bx+c} \]
(equivalent to \(Y = a \cdot e^{bx} \) where \(a = e^c \)).

Similarly when \(Y \) is the independent variable.

For **Polar plots** (where Theta is the independent variable): Tecplot 360 EX finds the best curve of the form:

\[R = e^{(b + c \theta)} \]
\[R = e^{a e^{b \theta}} \]

Similarly when \(R \) is the independent variable.

To fit an exponential function to your data, right-click in the Curve Type column on the Curves page of the Mapping Style dialog and select “Exponential Fit.”

By default, this option uses all the data points in the mapping, weighting them equally.

Use the **Exponential Fit Settings** dialog (accessed by right-clicking in the Curve Setting page on the Curves page of the Mapping Style dialog) to specify different settings. The dialog is shown below.

[Exponential Fit Settings dialog](#)
XY and Polar Line Plots

- To limit the points used in the mapping(s) - Select “Use Only Points Within Range”, and enter minimum and maximum values.
- To assign a curve weighting variable - Select “Use Weighting Variable”, and choose the variable from the drop-down. For more information on curve weighting, see Curve-fit Weighting Variables.

Power Curve-fit

Tecplot 360 EX fits a power function to data using the standard least-squares algorithm. The dependent-variable values must be either all positive or all negative, and the independent values should be all positive. Data points with zero or negative independent values are ignored.

For **XY plots (where X is the independent variable)**: Tecplot 360 EX finds best curve of the form:

\[Y = e^{b \ln X} + c \]

(equivalent to \(Y = a X^b \) where \(a = e^c \)).

Similarly, when Y is the independent variable.

For **Polar plots (where Theta is the independent variable)**: Tecplot 360 EX finds the best curve of the form:

\[R = e^{2 \ln \Theta} \]

or

\[R = e^{2 \Theta} \]

Similarly, when R is the independent variable.

To fit a power-curve function to your data, right-click in the Curve Type column on the Curves page of the **Mapping Style** dialog and select “Power Curve.”

This option uses all the data points in the mapping, weighting them equally.

Use the **Power Fit Settings** dialog (accessed via the [Curve Settings] button) to specify different settings. The dialog is shown below.

- To limit the points used in the mapping(s) - Select “Use Only Points Within Range”, and enter minimum and maximum values.
To assign a curve weighting variable - Select “Use Weighting Variable”, and select the variable from the drop-down. For more information on curve weighting, see Curve-fit Weighting Variables.

Spline

A spline is a mathematical function defined to link a specified set of points with a function that is continuous and smooth (differentiable) at every point. The most common type of spline, the cubic spline, is defined using a set of cubic polynomials, one for each interval between the data points.

Splines can be natural or clamped: natural splines are twice-differentiable at the end points and the second derivative is zero at those points, while clamped splines have known first-derivatives at the boundary points. Before plotting the spline, the data points are sorted in increasing value along the independent axis.

To fit a spline function to your data, right-click in the Curve Type column on the Curves page of the Mapping Style dialog and select “Spline.” By default, this option fits a natural cubic spline.

To specify a clamped spline:

1. Right-click in the Curve Setting column on the Curves page of the Mapping Style dialog and choose Settings.
2. In the Spline Settings dialog (shown below), select “Clamp the Spline”, and enter values for the derivative at the start and end of the spline.

![Spline Settings Dialog](image)

Parametric Spline

The cubic spline fit assumes that the spline function is a single-valued function of the independent variable.

Sometimes, however, you have data that curves back upon itself, but you would still like to have a spline-like curve fit to it. Parametric splines solve this problem by presuming that both variables ("X&Y" or "Theta&R") are functions of the data-point index. The spline is then defined by two single-valued functions of the data-point index.

Unlike cubic splines, parametric splines are plotted in the order set in the Sort option of the Definitions page of the Mapping Style dialog. By default, the points are unsorted, and thus the spline is drawn in the order the data points appear in the data file. See Section 6 - 1.1 “Mapping Definitions” for a discussion of sorting.

To fit a paraspline function to your data, right-click in the Curve Type column on the Curves page of the Mapping Style dialog and choose “ParaSpline.”
XY and Polar Line Plots

By default, this option fits two natural cubic splines to the data point index.

To specify a clamped spline:

1. Select Parab Spline from the Curve drop-down menu, and then select Curve Settings.
2. In the Parametric Spline Settings dialog (shown below), select “Clamp the Spline”, and enter values for the derivative at the start and end of the spline.

![Parametric Spline Settings dialog](image)

For the XY Line plot type, the derivatives are either \(\frac{dy}{dx} \) or \(\frac{dx}{dy} \) depending on the Function Dependency for the mapping. Tecplot 360 EX calculates \(\frac{dx}{ds} \) and \(\frac{dy}{ds} \) from these values (where \(s \) is the parametric variable). For the Polar Line plot type, the derivatives are either \(\frac{dR}{d\theta} \) or \(\frac{d\theta}{dR} \) (depending on the Function Dependency for the mapping), and \(\frac{dR}{ds} \) and \(\frac{d\theta}{ds} \) are calculated from these values (where \(s \) is the parametric variable). See Section “Dependent and Independent Variables” on page 156 for a full description of the Function Dependency option.

Extended Curve-fit

Tecplot 360 EX add-ons can provide new curve-fit types. These curve types are called extended curve-fits. These curve-fits may be provided by Tecplot 360 EX, a third party, or written by users. The functionality of each extended curve-fit is defined by its creator.

To fit an extended curve to your data:

1. Use the Curves tab of the Mapping Style dialog to select the mappings for which you want to apply an extended curve-fit.
2. Right-click Curve Type, and select an option from the drop-down.
3. The extended curve fit options are located below the separation line (shown below).

![Extended Curve-fit options](image)

Extended Curve fits can also be selected by the right-click context menu on a line plot. Simply right-click on the line you wish to change, hover over Curve Type, and a similar drop-down menu will appear as above.
Three extended curve fit add-ons are supplied with Tecplot 360 EX:

- **Akima** - The Akima spline is an alternative that exhibits less dramatic overshoots and undershoots than the classical spline. The slopes at the end of each segment are computed using a nonlinear average of the segment slopes. The Akima spline is always unclamped. There are currently no options available for the Akima spline.
- **Extended Curve Fit - General**
- **Extended Curve Fit - Stineman**

Extended Curve Fit - General

The General Curve Fit add-on fits an equation composed of a linear combination of user-specified sub-functions to the data in the specified map. The optional parameters can be accessed by selecting the Curve Settings option on the Curves page of the Mapping Style dialog.

The curve fit computes (least squares) the optimal curve fit coefficients by multiplying these sub-functions.

The following options are available:

- **Number of Coefficients** - Specify the number of coefficients (and number of sub-functions) for the desired curve fit. The default is three. You must specify a sub-function for each coefficient in the text fields labeled \(f_1(x) \) through \(f_n(x) \), where \(n \) is the number of coefficients.
- **\(f_1(x) \) through \(f_8(x) \)** - Enter the sub-functions for the curve fit using the syntax described in Section 20.1 "Data Alteration through Equations".
- **Normalize X** - Causes the curve to be fit using a normalized independent variable. In particular, the independent variable will be translated and scaled to vary from zero at the smallest value of the independent variable to one at the largest value of the independent variable, even if \(x \) is specified as the dependent variable in the Dependent Variable option of the Mapping Style dialog.

In these equations use the variable \(x \) as the independent variable, even if \(x \) is specified as the dependent variable.

variable. For most curves other than polynomials, this option will alter the shape of the curve fit. It is useful when you get the “Rank reduced for at least one curve fit” warning message, but otherwise is not recommended.

- **Normalize Y** - Causes the curve to be fit using a normalized dependent variable. In particular, the dependent variable will be translated and scaled to vary from zero at the smallest value of the dependent variable to one at the largest value of the dependent variable. For most curves other than polynomials, this option will alter the shape of the curve fit. It is useful when you get the “Rank reduced for at least one curve fit” warning message, but otherwise is not recommended.

Extended Curve Fit - Stineman

This method of interpolation generates a curve that will never have more inflection points than are clearly required by the given set of data points. The interpolating curve passes through the data points and exactly matches the computed slopes at those points.

The optional parameters can be accessed by selecting the Curve Settings option on the Curves tab of the Mapping Style dialog.

Line Segment (No Curve-fit)

By default, a series of linear segments are drawn between each set of points for the XY Line plot type. To turn off curve fits for your data and use linear segments between points:

1. From the Curves page of the Mapping Style dialog, select the mappings you want to show as linear segments.
2. Right-click in the Curve Type column on the Curves page of the Mapping Style dialog and select “Line Segments.”

Line Segments are plotted in the order set in the Sort option of the Definitions page of the Mapping Style dialog. By default, the points are unsorted, and lines segments are drawn in the order the data points appear in the data file. See Section 6.1.1 “Mapping Definitions” for a discussion of sorting.

Dependent and Independent Variables

Every mapping has a dependent variable and an independent variable. The dependency relationship determines the shape of your plot for most curve types. This dependency has no effect on line segment curve types, and for parametric splines, the dependency is only used to determine starting derivatives for clamped parametric splines. Extended curve-fits are free to use or not use this dependency depending on the type of curve-fit supplied.

You specify the dependency relationship between your axis variables by right-clicking in the Dependent Variable column on the Curves page of the Mapping Style dialog.

1. For more information see Russell W. Stineman’s “A Consistent Well-behaved Method of Interpolation” in the July, 1980, issue of Creative Computing.
For the XY Line plot type, the default setting is $y=f(x)$ (you may change the value to $x=f(y)$). With $y=f(x)$, the X-axis variable is the independent variable and the Y-axis variable is the dependent variable. With $x=f(y)$, the Y-axis variable is the independent variable and the X-axis variable as the dependent variable. Two polynomial curve-fits of the same data using different dependency settings are shown in Figure 6-6.

![Figure 6-6. An XY Line plot type dependencies.](image)

Similarly for Polar Line plots, the default setting is $R=f(\Theta)$ (you may change the value to $\Theta=f(R)$). With $R=f(\Theta)$, the Theta-axis variable is the independent variable and the R-axis variable is the dependent variable. With $\Theta=f(R)$, the R-axis variable is the independent variable and the Theta-axis variable is the dependent variable.

To change the dependency setting:

1. From the Curves page of the Mapping Style dialog, select the mappings to change.
2. Right-click in the Dependent Variable column on the Curves page of the Mapping Style dialog, choose either $R=f(\Theta)$ or $\Theta=f(R)$.

For the XY Line plot type, the dependency setting determines the direction of bar charts. To create a vertical bar chart, set the dependency to $y=f(x)$; to create a horizontal bar chart, set the dependency to $x=f(y)$. See Section 6 - 5 "XY Line Bar Charts" for information on bar charts.

Curve-fit Weighting Variables

Linear and polynomial fits allow you to specify a weighting variable. By default each data point is weighted equally. With the weighting variable, individual points can be given more or less weight. Relatively larger numbers in the curve weighting variable mean more significance for a given point. If the curve-weighting variable is zero at a data point, that data point has no effect upon the resulting curve. Therefore, if your data contains outliers that would affect the overall curve fit, adding a zero weight at the point of the outlier will remove it from the overall curve fit calculation.

The weighting coefficients must be integers in the range of zero to 9,999. Weighting coefficients defined as floating-point numbers are truncated. That is, a weighting coefficient of 1.99 is truncated to 1.0.

Curve Information

You can view information about curve-fits and splines by right-clicking the curve in the plot and choosing an item from the Curve Details submenu. The available functions include...
XY and Polar Line Plots

- **Show On Plot** - Displays information about the curve directly on the plot, including the zone, the variables, the **Goodness of Fit**, and other information specific to the curve type (such as the polynomial for the Polynomial Fit type). This information is in a standard text element, and you can reposition it as usual, or change its appearance (its font, size, and color) using the **Text Details** dialog. It is automatically updated if you change the curve fit settings.

- **Write Curve Points to File** - Write the points of the curve to a Tecplot-format data file (.dat file).

- **Write Curve Details to File** - Writes the same information displayed by Show On Plot to a text file. Note that this text file includes some Tecplot text formatting tags such as `<sup>`.

Goodness of Fit

R^2 is displayed in the curve details for linear, polynomial, exponential, and power curve fits. It is a statistical calculation that measures the success of the curve-fit in modeling the variation of the data. R^2 is defined as the ratio of the sum of the squares of the regression (SSR) and the total sum of the squares (SST).

$$SSR = \sum_{i=1}^{n} W_i (y_{curve fit,i} - y_{mean})^2$$

$$SST = \sum_{i=1}^{n} W_i (y_i - y_{mean})^2$$

$$R^2 = \frac{SSR}{SST}$$

Where:

- **SSR** = sum of the squares of the regression
- **SST** = total sum of the squares
- **W_i** = the value of the weight variable at index i
- **y_i** = the value of the dependent variable at index i
- **y_{mean}** = the mean value of the dependent variable y
- **$y_{curve fit,i}$** = the value computed using the curve-fit at the i-index value of the independent variable (x_i).
- **i** = current index number
- **n** = total number of data points

R-square can take any value between zero and one, with a value closer to one indicating a better fit.

A fundamental error term in least-squares curve fits is the sum of the squares residual (SSE), defined by

$$SSE = \sum_{i=1}^{n} W_i (y_{curve fit,i} - y_i)^2$$
This is the number that is minimized when computing the curve-fit coefficients. Using the equation SST = SSE + SSR, R^2 can be related to SSE:

$$R^2 = 1 - \frac{SSE}{SST}$$

Using this form to compute R^2, it is easier to see that an R^2 closer to one (SSE=0) indicates a better curve-fit.

Goodness of Fit (Residual Degrees of Freedom Adjustment)

One problem with R^2 is that it will always indicate a good curve-fit when the number of data points, n, equals the number of degrees-of-freedom, m. (For example, a quadratic curve-fit through three data points.) In this case, the curve passes through all data points so SSE=0 and r-square=1. However, there are no other data points so, in reality, no estimate can be made on the quality of the curve fit away from the specified data points. In general, any time m (degrees-of-freedom) is close to n (number of data points), r-square will overstate the quality of the curve fit. For this reason, we include the second goodness-of-fit parameter: degrees-of-freedom adjusted R^2:

$$R^2_{dof} = 1 - \frac{SSE(n - 1)}{SST(m - n)}$$

Like the standard R^2, R^2_{dof} will vary from zero to one with values closer to one indicating a better curve fit. R^2_{dof} will be less than R^2 when the degrees-of-freedom are close to the number of data points, but will be nearly equal to R^2 when the number of data points is significantly greater than the degrees-of-freedom.

6 - 3 Symbols Map Layer

The Symbols map layer is available for both XY and polar line plots. Activate the layer by toggling-on “Symbols” in the Plot sidebar. When the Symbols map layer is on, each data point is represented by a symbol on the plot. For each mapping, you may choose the plotting symbol used, and whether to use filled or plain symbols.

6 - 3.1 Symbol Attributes

Use the Symbols page of the Mapping Style dialog (shown below) to modify the attributes of the Symbols layer.
XY and Polar Line Plots

The first two columns list the mapping number and name. The Show Map column indicates currently active mappings. These columns behave the same as the corresponding columns on the Definitions page (see “Mapping Definitions” on page 142).

The remaining columns of the Symbols page of the Mapping Style dialog contain specific symbol attributes: Symbol Show, Symbol Shape, Symbol Size, Symbol Spacing, Outline Color, Line Thickness, Fill Mode, and Fill Color.

In order for the changes made on the Symbols page to be visible in your plot, the Symbols mapping layer must be toggled-on in the Plot sidebar.

- **Show Symbols** - Allows you to turn off symbols for selected mappings, while keeping both the selected mappings and the Symbols map layer active overall.
- **Symbol Shape** - Right-click and choose a symbol type. In addition to the predefined symbols, you may use any ASCII character by selecting Character. Enter the ASCII character to use as a symbol in the Enter ASCII Character dialog (shown below), and select a font from which to display the symbol. See Table 18 - 2 on page 275 for further information on the symbols available in each character set.

You can change the base font in the Scatter Size/Font dialog, accessible via Plots: Symbol Font. See Section 11 - 2 “Scatter Size/Font” on page 219.

- **Symbol Size** - Right-click and choose the symbol size for your line plotting symbols. Symbol size is measured as percentage of the frame height. You can choose a preset size or enter your own.

- **Symbol Spacing** - Right-click to specify the spacing between symbols. The spacing is specified either as a percentage of the frame height or as a number of indices to skip. You may either enter a value or use a pre-set value.
 - **Draw All** - Symbols are drawn at every data point.
 - **ISkip=2, 3 or 4** - Symbols are drawn every second, third, or fourth data point.
 - **Distance=1, 2 or 3%** - Symbols are drawn at the first data point and subsequently at data points that are at least one, two, or three percent of the frame height distant from the previously plotted data point.
 - **Enter Index** - Enter an index skip between symbols.
 - **Enter Distance** - Enter a distance between symbols in frame units.

- **Outline Color** - Right-click to choose a color using the Color Chooser.

- **Line Thickness** - Right-click to choose the thickness of lines used to draw the plotting symbols. You may either enter a value or use a pre-set value.

- **Fill Mode** - Right-click to specify Fill Mode:
 - **None** - The symbols are not filled.
XY Line Error Bars

- **Use Line Color** - The symbols are filled with the same color specified in Outline Color and appear as a solid color.
- **Use Back Color** - The symbols are filled with background color of the grid area, and appear hollow, blotting out objects behind the symbol (such as grid lines or other mappings).
- **Use Specific Color** - The symbols are filled with the color specified in Fill Color.
- **Fill Color** - If the Fill Mode is set to “Use Specific Color”, right-click in this column to choose the fill color in the Color Chooser.

For information on using the controls at the bottom of the Mapping Style dialog to select mappings by name, see the description of these at the end of "Mapping Definitions" on page 142.

6 - 3.2 Enter ASCII Character

Use the Enter ASCII Character dialog to specify an ASCII character to use as a plotting symbol in either a field scatter plot or an XY symbol plot. You enter the desired character, and then choose the character set from which to draw the character. See Table 18 - 2 on page 275 for further information on the symbols available in each character set.

This dialog has one text field for specifying the ASCII character and four option buttons representing the available character sets, as follows:

- **Enter Character to use as a Symbol** - Enter the desired ASCII character in this text field.
- **Base** - Select this to use the English-text character set as the source of the plotting character.
- **Math** - Select this to use the math character set as the source of the plotting character.
- **Greek** - Select this to use the Greek character set as the source of the plotting character.
- **User-defined** - Select this to use the user-defined character set as the source of the plotting character. See Section 30 - 4 "Custom Character and Symbol Definition" on page 467.

6 - 4 XY Line Error Bars

In the XY Line plot type, you can assign one or more variables to be used to compute error bars for another variable. Each mapping can be associated with only one error bar variable. If you want to assign multiple error bar variables to a mapping, create a copy of the mapping for each error bar variable.
XY and Polar Line Plots

An example plot with error bars is shown in Figure 6-7.

![An XY Line plot with symbols and error bars.](image)

Figure 6-7. An XY Line plot with symbols and error bars.

You can use any variable in your dataset as an error bar variable. However, for them to be meaningful, they should have the same units as the axis along which they are drawn.

If error bar values are not included in your original dataset, you may create error variables using Tecplot 360 EX’s data manipulation utilities. For example, if you know that the values of some measured variable are accurate only to within ten percent, you may create a new variable to use as the error bar variable by multiplying the measured variable by “0.10” via **Data>Alter>Specify Equations.** See Chapter 20: “Data Operations”.

6 - 4.1 Select Variable

Use the **Select Variables** dialog to choose:

- A single variable, as when assigning a variable to the X or Y-axis in an mapping. The text and labels will vary with the particular action being performed, but the operation of the dialog is the same in all cases. Select a variable from the drop-down of the dataset’s variables and select [OK].
- Two variables, as when assigning 2D axis variables or choosing 2D vector components. The text and labels will vary with the particular action being performed, but the operation of the dialog is the same in all cases. For each of the two variables required, select a variable from the drop-down of the dataset’s variables.
- Three variables, as when assigning 3D axis variables or choosing 3D vector components. The text and labels will vary with the particular action being performed, but the operation of the dialog is the same in all cases. For each of the three variables required, select a variable from the drop-down of the dataset's variables.
6 - 4.2 Error Bar Attributes

You can modify most of the attributes with which error bars are drawn—their color, their thickness, their spacing, and the width of the endpoint crossbars. You can make these changes from the Error Bars page of the Mapping Style dialog (shown below).

In order for the changes made on the Error Bars page to be visible in your plot, the Error Bars mapping layer must be toggled-on in the Plot sidebar.

The first two columns list the mapping number and name. The Show Map column indicates currently active mappings. These columns behave the same as the corresponding columns on the Definitions page (see “Mapping Definitions” on page 142). The other settings are:

- **Show Error Bars** - Indicates whether error bars are displayed for this mapping.
- **Error Bar Variable** - Right-click or double-click to choose the error bar variable.
- **Error Bar Type** - Right-click to choose from seven types of error bars.
 - **Up** - Extends upward for positive values (and downward for negative values) of the error bar variable.
 - **Down** - Extends downward for positive values (and upward for negative values) of the error bar variable.
 - **Left** - Extends to the left for positive values (and to the right for negative values) of the error bar variable.
 - **Right** - Extends to the right for positive values (and to the left for negative values) of the error bar variable.
 - **Horizontal** - Extends left and right.
 - **Vertical** - Extends up and down. (This is the default value.)
 - **Cross** - Extends up, down, left, right.

Although the values are called Left, Right, Up and Down, the direction is determined by the direction of positive values in your plot. If you reverse the direction of an axis (using the Reverse Axis Direction option on the Range page of the Axis Details dialog), the error bars point in the opposite direction.
XY and Polar Line Plots

- **Error Bar Spacing** - Right-click to specify the spacing between error bars. The spacing is specified either as a percentage of the frame height or as a number of indices to skip. You may either enter a value or use one of the following pre-set values:
 - **Draw All** - Error bars are drawn at every data point.
 - **ISkip=2, 3 or 4** - Error bars are drawn every second, third or fourth data point.
 - **Distance=1, 2, or 3%** - Error bars are drawn at the first data point and subsequently at data points that are at least one, two or three percent of the frame height distant from the previously plotted data point.

- **Error Bar Color** - Right-click to specify the error bar line color in the Color Chooser.

- **Error Bar Size** - Right-click to specify the size of the crossbar. Crossbar size is measured as a percentage of frame height. You may either choose a preset value or enter an exact value yourself.

- **Line Thickness** - Right-click to specify the line thickness of the error bars. The error bar line thickness is measured as a percentage of frame height.

For information on using the controls at the bottom of the Mapping Style dialog to select mappings by name, see the description of these at the end of "Mapping Definitions" on page 142.

6 - 5 XY Line Bar Charts

A bar chart is an XY Line plot that uses vertical or horizontal bars placed along an axis to represent data points. You can create bar charts by activating the Bars map layer on the Plot sidebar.

6 - 5.1 Bar Chart Attributes

The style of the bar chart is controlled on the Bar Charts page of the Mapping Style dialog, shown below.

The first two columns list the mapping number and name. The Show Map column indicates currently active mappings. These columns behave the same as the corresponding columns on the Definitions page (see "Mapping Definitions" on page 142).

- **Show Bars** - Toggle on or off the bar chart for this mapping.
- **Bar Direction** - Right-click to change between vertical or horizontal bars.

Changing the direction of the bars changes the dependent variable attribute used for line curves (either \(y=f(x) \) or \(x=f(y) \)), and vice versa. By default, all mappings use \(y=f(x) \) and appear as vertical bar charts. If a mapping uses horizontal bars, the mapping will also use \(x=f(y) \) for curve...
fits. Of course, this only matters if you plot bars and curve-fits for the same mapping. For more information about dependency, see Section "Dependent and Independent Variables" on page 156.

To modify other attributes (Bar Size, Outline Color, Line Thickness, Fill Mode, Fill Color) on the Bars page, follow the same procedures used to set Section 6 - 3.1 "Symbol Attributes".

For information on using the controls at the bottom of the Mapping Style dialog to select mappings by name, see the description of these at the end of "Mapping Definitions" on page 142.

6 - 6 I, J, and K-indices

Each mapping can show either I, J, or K-varying families of lines. By default, Tecplot 360 EX displays the I-varying family of lines. Figure 6-8 shows the family of I-varying lines for Zone 1 of the data.

![Figure 6-8. A family of I-varying lines for the cylinder data.](image)

You can change the family of lines using the Indices page of the Mapping Style dialog as shown below.

![Mapping Style dialog](image)

The first two columns list the mapping number and name. The Show Map column indicates currently active mappings. These columns behave the same as the corresponding columns on the Definitions page (see "Mapping Definitions" on page 142).
XY and Polar Line Plots

You can also choose which members of the family are drawn (and using which data points), by specifying index ranges for each of I, J, and K. The index range for the varying index tells Tecplot 360 EX which points to include in each line, and the index ranges for the other indices tell Tecplot 360 EX which lines in the family to include. Thus, you may use this option for selecting a subset of an I-ordered zone to plot.

- **Varying Index** - To choose the varying index, and thus specify the family of lines to be drawn, right-click the Varying Index column and choose the desired family (I, J, or K-varying). K-varying is only available if the mapping is using an IJK-ordered zone.
- **Index Ranges** - By default, the entire range of points is plotted in your mapping. For J- and IJK-ordered data, you may want to specify an index range to limit the number of lines drawn. Or, for any type of data, you may want to limit the points drawn to a select range. Right-click and choose Enter Range to specify the range. Enter a starting index in the Begin field, an ending index in the End field, and a skip factor in the Skip field. A skip of one means “use every point in the range,” a skip of two means “use every other point,” and so on.

For information on using the controls at the bottom of the Mapping Style dialog to select mappings by name, see the description of these at the end of “Mapping Definitions” on page 142.

6 - 7 Line Legend

You can generate a legend that shows the line and symbol attributes of the mappings. In XY Line plots, this legend includes the bar chart information. The legend can be positioned anywhere within the line plot frame.

The mappings that are shown in the legend are selected on the Definitions page of the Mapping Style dialog. By default, all mappings are shown, but Tecplot 360 EX removes redundant entries.

To include the line plot legend, open the Line Legend dialog (accessed via the Plot menu) and toggle-on “Show Line Legend”.

The Line Legend dialog has the following additional options:
• **Show Mapping Names** - Toggle-on or off to include mapping names in the legend.

• **Text** - Format the text for the legend by choosing a color, font, and size. (See Section 18.1.2 “Font Folders and Fallback” on page 273 for more information on how fonts work with Tecplot 360 EX.)

• **Position** - The legend is automatically placed for you. You may specify the position of the legend by entering values in the X (%) and Y (%) text fields. Enter X as a percentage of the frame width and Y as a percentage of the frame height.

• **Line Spacing** - Spacing between items in the legend as a multiple of the font size.

• **Anchor** - You may also specify the anchor location of the legend using the **Anchor Alignment** dialog. By default, the legend is anchored in the top right.

• **Legend Box** - Choose No box, Outline, or Fill mode. If the legend box mode is Outline or Fill, the box attributes may be changed with the following controls:

 • **Line Thickness** - Specify the line thickness as a percentage of frame height.

 • **Box Color** - Choose a color for the legend box outline.

 • **Fill Color** - Choose a color for the legend box fill (Fill mode only).

 • **Margin** - Specify the margin between the legend text and legend box as a percentage of the text height.
6 - 7.1 Specify Number Format

- **Format** - Choose the format for numbers in the legend from the drop-down:
 - **Integer** - Display the number as an integer; if the exact value is not an integer, it is truncated.
 - **Float** - Display the number as a floating-point number. The value is shown to the number of decimal places specified in the Precision field.
 - **Exponent** - Display the number using FORTRAN exponential format (for example, 1.0125E + 02). The number of decimal places is specified using the Precision field.
 - **Best Float** - Display the number as a floating-point number, with its exact form determined by Tecplot 360 EX.
 - **Range Best Float** - Tecplot 360 EX selects the best floating-point representation of the tick mark labels, taking into account the range of values on the axis. (Available only for axis labels.)
 - **Superscript** - Display the number in scientific notation, using a number times a power of ten. The number of decimal places shown is specified using the Precision field.
 - **Custom** - Not a number format at all, Custom specifies that a set of custom labels (specified by number in the Custom Set field) should be used in the contour legend. The first label in the set is used for the value one, the second label for two, and so on. All non-integer numbers are rounded to the nearest integer. If the number of labels exceeds the number of custom labels, the labels are reused cyclically as needed. For example, if you have defined the custom labels Mon., Tue, Wed, Thu, Fri, Sat, and Sun, then a value of eight would display Mon, nine would display Tue, and so on.
 - **Time/Date** - You can specify a Time/Date format for your labels by selecting Time/Date from the Format drop-down menu. See Section 17 - 11 "Time/Date Format Options" for more information on specifying your labels in Time and/or Date format.

- **Precision** (Float, Exponent, or Superscript only) - Enter the number of decimal places each number is to show.

- **Custom Set** (Custom only) - Enter the number of the set of custom labels. You define custom label sets as records in standard Tecplot-format data files.
• **Show Decimal on Whole Numbers** - When this toggle is checked, whole numbers include a trailing decimal (that is, the number 2 is displayed as 2).

• **Remove Leading Zeros** - When this toggle is checked, leading zeros are removed from numbers (that is, 0.25 is displayed as .25).

• **Show Sign on Negative Numbers** - When this toggle is checked, negative numbers show the negative sign. When unchecked the negative sign will be removed (that is, -1.43 is displayed as 1.43). This is useful if you have specified a special prefix or suffix for negative values.

• **Prefix and Suffix** - You can specify a custom prefix and/or suffix for numbers in Tecplot 360 EX using the Prefix/Suffix text fields. Tecplot 360 EX allows you to specify separate prefixes and suffixes for zero values and negative values as well.
XY and Polar Line Plots
Field Plots

Field plots are 2D Cartesian or 3D Cartesian plots. The axes in a field plot are all independent variables. In Tecplot 360 EX, field plots can be created using any combination of the following zone layers:

- Mesh Layer
- Contour Layer
- Vector Layer
- Scatter Layer
- Shade Layer
- Edge Layer

By default, 2D and 3D field plots are initially displayed with Mesh and Edge zone layers (Figure 7-1).

![Figure 7-1. A 2D mesh and edge plot.](image)

3D field plots may be enhanced with lighting effects and translucency (see Chapter 13: “Translucency and Lighting”).

Bounding boxes are displayed in 3D plots for volume-only zones when the plot contains only such zones and the zones themselves are not otherwise visible due to having no style. These bounding boxes may be turned off in the Options menu.

Field plots may also contain any combination of the following objects (which are derived from the values in the dataset):
Field plots

- Iso-surfaces (3D only)
- Slices (3D only)
- Streamtraces

This chapter discusses the plot attributes that are common to all of the plot layers.

7 - 1 Field Plot Modification and the Zone Style Dialog

Once you have loaded your data, you can modify field plot attributes using the Zone Style dialog or the context toolbar.

The context toolbar appears above the context menu when you right-click a zone in your field plot. This toolbar allows you to turn on or off the grid, contour, vector, shade, edge, and translucency layers for the selected zone(s).

Additionally, you may adjust frequently-used style settings for each layer using the drop-down menu to the right of each, for example selecting a color for the grid (or choosing a variable by which to color it).

The Zone Style dialog may be opened by clicking the Zone Style button in the Plot sidebar or from the Plot menu. Initially, any zones selected in the workspace are selected in the Zone Style dialog. You may also double-click any zone in your plot to open the dialog with that zone selected.

The following pages are available in the Zone Style dialog, each representing a plot layer:

- Mesh - See Chapter 8: "Mesh Layer and Edge Layer".
- Contour - See Chapter 9: "Contour Layer".
- Vector - See Chapter 10: "Vector Layer".
- Scatter - See Chapter 11: "Scatter Layer".
- Shade - See Chapter 12: "Shade Layer".
- Points - See Section 7 - 1.1 "Points".
- Surfaces - See Section 7 - 1.2 "Surfaces".
- Volume - See Section 7 - 1.3 "Derived Volume Object Plotting", (3D only)
- Effects - See Chapter 13: "Translucency and Lighting".

The values in the Zone Style dialog can be modified in place. For example, some settings, such as Show Zone, are represented by checkboxes, and can simply be clicked to toggle their state. Other settings allow you to right-click to display a context menu or other method for changing them. These allow you to change the setting for multiple zones at once by selecting the desired zones (hold down Shift or Control while clicking), then right-clicking in the column for the setting you wish to change.

Each page of the Zone Style dialog is divided into three color-coded regions. The blue columns apply to the zone itself and are the same on all pages of the dialog. The green and orange columns represent primary and secondary settings specific to the corresponding plot layer.

The following attributes in the Zone Style dialog apply to the zone in general and appear on all pages of the dialog.

172
Field Plot Modification and the Zone Style Dialog

- **Zone Number** - The number of each zone.
- **Zone Name** - The name of each zone. Strands are indicated by an “*” after the name.

For transient data, the first zone of the strand applicable to the current time step is displayed in the Zone Name and Zone Number columns.

- **Group Number** - Displays the zone's group number. Double-click to change the number.
- **Show Zone** - By default, all zones are displayed. Turn zones or groups of zones on or off by toggling the checkboxes in this column on or off.
- **Select Zones by Pattern** - Enter a wildcard pattern in the Selection criteria text box and click Zones or Groups to select one or more zones based their name or group number. Selecting Zones will match the selection criteria with the Zone Name while selecting Groups will match the selection criteria with the Group Number. In wildcard patterns, most characters match themselves, but the * and ? characters have special meaning.

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Matches any single character.</td>
</tr>
<tr>
<td>*</td>
<td>Matches any number of characters, including none.</td>
</tr>
</tbody>
</table>

- **Clear** - Clear the selection and the Selection criteria field.

The remaining columns in the Zone Style dialog are dependent upon the active page and are discussed in their corresponding sections.

7 - 1.1 Points

You may select the source for the data points used to plot vectors and scatter symbols from the Points page of the Zone Style dialog (shown below).

For information on using the controls at the bottom of the Zone Style dialog to select zones by name, see the description of these at the end of "Field Plot Modification and the Zone Style Dialog" on page 172.
Figure 7-2 shows a plot where zone 1 is plotting scatter symbols only on one plane (J=5) and zone 2 is plotting all symbols.

Points to Plot
- Right-click to select how the points are plotted:
 - **Nodes on Surfaces** - Draws only the nodes that are on the surface of the zone.
 - **All Nodes** - Draws all nodes in the zone.
 - **All Connected** - Draws all the nodes that are connected by the node map. Nodes without any connectivity are not drawn.
 - **Cell Centers Near Surfaces** - Draws points at the cell centers which are on or near the surface of the zone.
 - **All Cell Centers** - Draws points at all cell centers in the zone.

Index Skip
- Right-click to specify the skip intervals for the I, J, and K-indices. The menu options are as follows:
 - **No Skip** - Set the I, J, and K-skip intervals to one; plot all points or vectors.
 - **Enter Skip** - Specify I, J, and K-skip intervals on the Enter Index Skipping dialog.

For irregular and finite element data, only the I-Skip has an effect. J-skip will allow you to skip through nodes in the order they are listed in the data file.

7 - 1.2 Surfaces

There are many ways to divide volume data for plotting. One way to view volume data is to select surfaces from part of the data. In Tecplot 360 EX you may choose which surfaces to plot for volume zones from the
Surfaces page of the Zone Style dialog (accessed by double-clicking on a zone via the Plot sidebar, or via Plot>Zone Style.

Right-click in the Surfaces to Plot column to choose one of the following:

- **None** - None of the volume zone surfaces are plotted (edges still appear). This is the default Surfaces setting for your plot.
- **Boundary Cell Faces** - Plots all surfaces on the outside of the volume zone. This includes:
 - **IJK-ordered data** - The minimum and maximum I, J, and K-planes are plotted.
 - **Finite element volume data** - All faces that do not have a neighbor cell (according to the connectivity list) are plotted.

If blanking is turned on, the boundary cells in the blanked region will not be drawn and you will be able to see the interior of the volume zone. Figure 7-3 shows plots of a volume zone with Surfaces to Plot set to “Boundary Cell Faces”: without blanking, with value blanking, and with IJK-blanking. See Chapter 19: “Blanking” for information on working with Blanking.

For information on using the controls at the bottom of the Zone Style dialog to select zones by name or by group number, see the description of these at the end of "Field Plot Modification and the Zone Style Dialog" on page 172.
Figure 7-3. Boundary Cell Face plotting without blanking, with value-blanking, and with IJK-blanking.

- **Exposed Cell Faces (default)** - This setting is similar to the “Boundary Cell Faces” setting, unless value blanking is active. When value blanking is used, the outer cell faces between blanked and non-blanked cells and the outer surfaces of the data are drawn. Figure 7-4 shows a plot of a volume zone with Surfaces to Plot set to “Exposed Cell Faces” with and without value blanking. See Chapter 19: “Blanking” for information on working with Blanking.

Figure 7-4. Examples of plots where Surfaces to Plot has been set to “Exposed Cell Faces” with (left) and without (right) value-blanking.

- **Planes Settings (I, J, K, IJ, JK, IK, and IJK-planes)** - Plots the appropriate combination of I, J, and/or K-planes. The planes are determined by the Range for each plane, which can be set by right-clicking in a range column. These settings are available only for IJK-ordered data. Figure 7-5 shows a number of examples of plotting I, J, and K-planes.

Figure 7-5. Examples of plotting I, J, and K-planes.

- **Every Surface (Exhaustive)** - This setting will plot every face of every cell in volume data. It is not recommended for large datasets. Unless the surfaces are translucent, the plot will appear the same as the Exposed Cell Faces setting.

- **Ranges** - The Range for I, J, or K Planes options allow you to specify the ranges for the corresponding planes. Right-click in the appropriate Range column to enter the range as the beginning plane, the ending plane (0 indicates the maximum index, -1 the next highest, and so on) and the skip factor in the Enter Range dialog. Use a skip factor of two to display every other plane, a skip factor of three to display every third plane, and so on.
7 - 1.3 Derived Volume Object Plotting

The Volume page of the Zone Style dialog allows you to specify whether or not to show streamtraces, isosurfaces, or slices for the selected zone(s). Right-click in the appropriate column to choose yes or no. Figure 7-6 shows a plot with two zones where streamribbons and an iso-surface have been excluded from zone 2.

![Figure 7-6](image)

Figure 7-6. A plot where streamribbons and an iso-surface have been excluded from zone 2.

7 - 2 Time Aware

For transient datasets, you can use the Tecplot 360 EX interface to display your data at a given time or to animate your data over time. The zones loaded into Tecplot 360 EX can be linked to a specific solution time, and the active solution time is used to determine which zones are displayed.

For the following definitions, consider the following fictitious dataset:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Time</th>
<th>StrandID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0.18</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0.22</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0.25</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0.28</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0.32</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>0.38</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>0.42</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0.52</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0.57</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>0.58</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>0.62</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Field Plots

- **Transient zones** - Zones associated with time. The transient zone(s) displayed in the current frame are dependent upon the current solution time. Zones 2-13 in Table 7-1 are transient zones.
- **Static zones** - Zones not associated with time. They are displayed regardless of the current solution time. Zones 1 and 14 from Table 7-1 are static.
- **Current Solution Time** - The value that determines which transient zones are displayed in the current frame.
- **Strand** - A series of transient zones that represent the same part of a dataset at different times. Zones 2, 5, 8, and 11 in Table 7-1 all have the same StrandID and therefore, they are part of the same strand.
- **StrandID** - An integer value defined for each transient zone. The StrandID of a given zone is determined by the data loader.

Changes made in the Zone Style dialog to any zone in a given StrandID are propagated to all zones with that StrandID. See also Section 7-1 "Field Plot Modification and the Zone Style Dialog".

- **Relevant Zone** - Only “relevant zones” are plotted at a given solution time. A relevant zone is defined as a zone for a given strand used for a certain solution time. If the strand exists at solution time n, the relevant zone is either the transient zone on that strand defined explicitly at solution time n, or the zone defined immediately prior to solution time n. If the strand does not exist at solution time n, there are no relevant zones for that strand at that time. Static zones are always considered relevant. Refer to Figure 7-7.

Figure 7-7. An illustration of how relevant zones are determined (based on the data in Table 7-1). For a given solution time, the relevant zones ONLY are displayed in the plot. NOTE: static zones are always considered relevant zones.

- \(t = .2s \) - The red-colored transient zones and both static zones are plotted. NOTE: no zones from the first strand are represented because the strand is not defined at that time.
- \(t = .4s \) - The green-colored transient zones and both static zones are plotted.
- \(t = .6s \) - The blue-colored transient zones and both static zones are plotted. NOTE: no zones from the second and third strands are represented because the strands are not defined at that time.

7 - 3 Data Point and Cell Labels

Field Plots - You can label all or some of the data points or nodes in your field plots with either the index value(s) of the data point or the value of some specified variable at each point. You can also label each cell or element of the data with its index (which for finite element data is its element number).

Line Plots - You can label all or some of the data points or nodes in your line plots with either the index of the data point, the value of the dependent variable at the point, or both the values (X&Y or Theta & R) for...
Data Point and Cell Labels

the data point. For example, Figure 7.8 shows an XY Line plot with each data point labeled with its X-Y value pair.

![Figure 7.8. An XY-line plot with data labels.](image)

To add data labels to your plot, go to Plot>Label Points and Cells dialog (accessed via the Plot menu). The Label Points and Cells dialog has the following options:

- **Show Node Labels** - Toggle-on to show node labels. Select either Index Value or Variable Value.

Index values are not displayed for subzone data sets (.szplt) since these values cannot currently be reliably determined with this file format.
Field Plots

- **Show Cell Labels** - Toggle-on to show cell labels. Select either Index Value or Variable Value.
- **Index Skip** - If labeling by index values, select an index skip.
- **Color Text by Zone/Map** - Toggle-on and choose the color, font, font size, and number format for the labels.
- **Include Text box** - Toggle-on “Include Text Box” to include a box around each label.

7 - 4 Three-dimensional Plot Control

You can view any type of data as a 3D plot by selecting 3D Cartesian from the plot type drop-down menu in the Plot sidebar. IJK-ordered data and finite element volume data are displayed in 3D automatically.

Three-dimensional plots can be manipulated with the following controls, which can be accessed via the Plot menu:

- **Reset 3D Axes** - Reset the 3D axis sizes and the 3D origin of rotation.
- **Three-dimensional Axis Limits** - Control the data and axis aspect ratios for 3D plotting.
- **Three-dimensional Orientation Axis** - Control the optional 3D orientation axis, which displays the current orientation of the three axes in the workspace.
- **Light Source** - Control the light source position, as well as the intensity of the light, the background light, and the surface color contrast. See Section 13 - 4 “Three-dimensional Light Source” for more details.
- **Advanced 3D Control** - Specify the default lift fraction for 3D lines, symbols, and tangent vectors, as well as the 3D sorting algorithm for the plot.

The following controls can be accessed via the View menu.

- **The Rotate Dialog** - Control the 3D orientation of the plot.
- **Three-dimensional View Details** - Set the specifications for parameters affecting the 3D display of your plot, including the perspective, field of view, angular orientation of the plot, and view distance.

7 - 4.1 Reset 3D Axes

By default, the 3D axes are calculated to fit the data. If you alter your data to expand or contract the overall data size, the axes will not automatically adjust to the new size. Use the Reset 3D Axes option (accessed via the Plot menu) to reset the axes to fit the data.

The Reset 3D Axes option also resets the 3D origin. If you have modified your 3D origin using the 3D Rotate dialog (see Section 7 - 4.5 “The Rotate Dialog” for details), the Reset 3D Axes option will reset it to approximately the centroid of the data.
Three-dimensional Plot Control

7 - 4.2 Three-dimensional Axis Limits

In a 3D plot, whenever you read a data file, manipulate the values of variables assigned to the axes, or change variables assigned to the axes, Tecplot 360 EX examines the data and determines how to plot it. The data may require scaling in one or more axis directions, a change of the axis dependency, an adjustment of the space between the data and the axis box, and/or an adjustment of the shape of the axis box. Because there are many valid forms in which the data could be plotted, by using the 3D Axis Limits dialog (accessed via the Plot menu), you can input information to help Tecplot 360 EX determine how to automatically configure the plot the way you want.

- **Data Aspect Ratio Limit** - When the data aspect ratio of any two axes exceeds the Data Aspect Ratio Limit, Tecplot 360 EX automatically rescales the longer axis so that the new data aspect ratio is equal to the Data Aspect Ratio Reset value. If your plots are usually unscaled (such as plots of real physical objects), you should set the data aspect ratio maximum to a large number like 30. Use a smaller number for evenly scaled axes.

- **Axes Aspect Ratio Limit** - Works similarly to the Data Aspect Ratio Limit, except Axes Aspect Ratio Limit attends to the shape and size of the axes box.

7 - 4.3 Three-dimensional Orientation Axis

The 3D orientation axis is a representation of your axes that immediately shows you the orientation. By default, all 3D plots show the 3D orientation axis in the upper right of the frame. Using the 3D Orientation Axis dialog under the Plot menu, you can control whether the 3D orientation axis is shown in your plot, and if so, its color, size, line thickness, and the position of the axis origin. You can also position the 3D orientation axis by simply clicking on it and dragging the axis to the desired location in the frame.

7 - 4.4 Advanced 3D Control

- **Lift Fractions** - The lift fraction is the fraction of the distance from the 3D origin of the object to your eye. If you specify lift fractions for 3D lines, tangent vectors, or scatter symbols, plotted objects of the appropriate type are lifted slightly towards you so that they lie on top of surface elements.

- **Perform Extra 3D Sorting** - For some 3D plots (i.e. plots with translucency), Tecplot 360 EX uses a painter’s algorithm. A quick sorting algorithm is used by default. The data objects are divided into smaller objects. The smallest object is usually a cell, finite element, vector, or scatter symbol. These objects are sorted based upon the distance from viewer, starting with the objects farthest from the viewer and working forward. This does not
detect problems such as intersecting objects. If the “Perform Extra 3D Sorting” check box is selected, a slower, more accurate approach is used to detect problems for you. There are instances when Tecplot 360 EX cannot sort correctly. For example, consider elements A, B, and C, where element A overlaps part of element B which overlaps part of element C which overlaps part of element A. Since Tecplot 360 EX draws only whole elements, one of these elements will be drawn last and each will cover (incorrectly) a portion of another element. If this occurs while printing or exporting, choosing an image format will often resolve the problem.

All of the settings in the Advanced 3D Control dialog are specific to the current frame.

7 - 4.5 The Rotate Dialog
You may rotate your 3D plots using the 3D Rotate dialog accessible via View>Rotate. The 3D rotation tools located in the toolbar are discussed in “Three-dimensional Rotation” on page 28.

The 3D Rotate dialog has the following options:

- **Rotate around**
 - Click the + or - buttons next to an axis to rotate the plot incrementally around that axis.
 - The Rotation Step field specifies the increment by which each click of the + or - button rotates the plot.

- **Center of Rotation**
 - **X** - Rotation of the eye/origin ray about the X-axis. Enter a value in the text field, or use the increase or decrease arrows at the right to specify a value.
 - **Y** - Rotation of the eye/origin ray about the Y-axis. Enter a value in the text field, or use the increase or decrease arrows at the right to specify a value.
 - **Z** - Rotation of the eye/origin ray about the Z-axis. Enter a value in the text field, or use the increase or decrease arrows at the right to specify a value.

- **Reset** - Use this drop-down to set the center of rotation to be the Center of Data (the center of the bounding box of the data) or Center of View (the point hit by a probe at frame coordinates 50%, 50%).

Center of View can result in an error if there is no data in the center of the frame. In this situation, the center of rotation will not move.

- **Spherical Angles** - Eye origin view. The angular orientation of the plot is defined by three spherical rotation angles:
 - **ψ (Psi)** - Tilt of eye origin ray away from Z-axis. (Range –720 to 720.)
 - **θ (Theta)** - Rotation of the eye origin ray about the Z-axis. (Range –720 to 720.)
 - **α (Alpha)** - Twist about the eye origin ray. (Range –720 to 720.)
Three-dimensional Plot Control

The eye origin ray is a line from the origin of the 3D object to your eye. The eye origin ray is perpendicular to the plane of the computer screen. These angles define a unique view. These angles are shown in Figure 7-9.

- **Preset Angles** - Specify one of four pre-defined orientations: the XY-Plane, the YZ-Plane, the XZ-Plane; or a default orientation with \(\psi=60 \), \(\theta=225 \), and \(\alpha=0 \).

Rotate About the Viewer Position

In addition to the rotation capabilities described above, you may also use the [Alt] key and mouse to rotate about the viewer (instead of rotating the object). Although you may use this feature while in orthographic projection, it is best suited for when perspective projection is being used. The [Alt] key and your middle mouse button may be used to simulate fly-through type motion. You may move closer to the object using the [Alt] key and middle mouse button, then turn your head using the [Alt] key and left mouse button.

Figure 7-9. 3D angles and 3D projection.
7 - 4.6 Three-dimensional View Details

Use the 3D View Details dialog (accessed via the View menu) to control a variety of parameters affecting the display of 3D plots.

- **Use Perspective** - Sets Tecplot 360 EX's projection type. If selected, Tecplot 360 EX draws the current frame with perspective projection. If not selected, Tecplot 360 EX draws the current frame with orthographic projection. (Range is 0.1 to 179.9.)

- **Field of View (deg)** - Sets the amount of the plot (in terms of spherical arc) in front of the viewer that may be seen. Zooming in or out of a 3D perspective plot changes this number and the viewer's position.

- **Maintain Object Size During Field of View Changes** - If selected, Field of View changes result in the viewer's position being moved so that approximately the same amount of the plane is visible after the change.

- **View Width** - Sets the amount of the plot (in X-axis units) in front of the viewer that may be seen. Not available when using perspective.

- **Viewer Position** - Change the viewer's relation to the image by resetting the X, Y, or Z-location, or by changing the view distance.

7 - 4.7 Three-Dimensional Zooming and Translating

Just as in all other plots, you may zoom and translate your plot using the mouse. This may be done using either the Zoom or Translate tools. For most tools, you may also use your middle and right mouse buttons (or [Ctrl]+right mouse button) to zoom and translate.

When the plot projection is orthographic, zooming by dragging with the middle mouse button magnifies the plot. When the plot projection is perspective, zooming by dragging with the middle mouse button changes the viewer angle, making the plot appear larger or smaller. If you want to change the viewer's

1. With orthographic projection, the shape of the objects is independent of distance. This is sometimes an "unrealistic" view, but it is often used when preserving true dimension is important (such as in drafting).
position by moving closer to or further away from an object, hold the [Alt] key down while using the middle mouse button or while using the 3D mouse.

Working with very large datasets may result in slow zooming, rotating, and translating. See Section 30 - 3 “Performance Dialog” for further information on plot approximation if zoom, rotate, or translate performance is poor.
Field Plots
Mesh Layer and Edge Layer

When working with two or three-dimensional field plots, Tecplot 360 EX allows you to interactively add or subtract any combination of plot layers. These layers can be applied to any set of zones in the active data set. This chapter discusses the Mesh Layer and the Edge Layer.

8 - 1 Mesh Layer

Toggle-on “Mesh” in the Plot sidebar to add a mesh layer to your plot. The mesh plot layer displays the lines connecting neighboring data points within a zone. For I-ordered data, the mesh is a single line connecting all of the points in order of increasing I-index. For IJ-ordered data, the mesh consists of two families of lines connecting adjacent data points of increasing I-index and increasing J-index. For IJK-ordered data, the mesh consists of three families of lines, one connecting points of increasing I-index, one connecting points of increasing J-index, and one connecting points of increasing K-index. For finite element zones, the mesh is a plot of every edge of all of the elements that are defined by the connectivity list for the node points. See Chapter 3: “Data Structure” for an in-depth description of ordered (IJK) and finite element data structures.
Once you have loaded your data, you can modify your mesh plot attributes using the Mesh page of the Zone Style dialog (accessed via the Plot sidebar or Plot>Zone Style). As discussed in Section 7 - 1.1 “Field Plot Modification and the Zone Style Dialog”, the changes made using the first four (blue) columns apply to the entire plot, while changes in the other columns apply to the active plot layer.

- **Show Mesh** - Checkbox that determines whether the mesh is visible for each active zone.
- **Mesh Type** - Right-click to choose wire frame, overlay, or hidden line. See Section 8 - 1.2 “Mesh Types” below.
- **Mesh Color** - Right-click to choose the mesh color using the Color Chooser.
- **Line Pattern** - Right-click to choose the line pattern for the mesh.
- **Pattern Length** - Right-click to choose the pattern length in percentage of frame height. You may choose a preset pattern length or enter your own.
- **Line Thickness** - Right-click to choose the mesh line thickness. You may choose a predefined setting or enter your own.

In order for the changes made on the Mesh page to be visible in your plot, the Mesh layer must be turned on. You can turn on the Mesh layer using the checkbox in the Plot sidebar.

For information on using the controls at the bottom of the Zone Style dialog to select zones by name, see the description of these at the end of “Field Plot Modification and the Zone Style Dialog” on page 172.

8 - 1.2 Mesh Types

Tecplot 360 EX has three distinct mesh types:

- **Wire Frame** - Wire frame meshes are drawn below any other zone layers on the same zone. In 3D Cartesian plots, no hidden lines are removed. For 3D volume zones (finite element volume or IJK-ordered), the full 3D mesh (consisting of all the connecting lines between data points) is not generally drawn because the sheer number of lines would make it confusing. The mesh drawn will depend upon your choice of “Surfaces to Plot” on the Surfaces page of the Zone Style dialog. See Section 7 - 1.2 “Surfaces” for further details. By default, only the mesh on exposed cell faces is shown.
Edge Layer

- **Overlay** - Similar to Wire Frame, mesh lines are drawn over all other zone layers except for vectors and scatter symbols. In 3D Cartesian plots, the area behind the cells of the plot is still visible (unless another plot type such as contour flooding prevents this). As with Wire Frame, the visibility of the mesh is dependent upon your choice of “Surfaces to Plot” on the Surfaces page of the Zone Style dialog. See Section 7 - 1.2 “Surfaces” for further details.

- **Hidden Line** - Similar to Overlay, except hidden lines are removed from behind the mesh. In effect, the cells (elements) of the mesh are opaque. Surfaces and lines that are hidden behind another surface are removed from the plot. For 3D volume zones, using this plot type obscures everything inside the zone. If you choose this option for 3D volume zones, then choosing to plot every surface (using the Surfaces page of the Zone Style dialog) has the same effect as plotting only exposed cell faces, but is much slower.

The opaque surfaces created by Hidden Line are not affected by the Lighting Zone effect (there is no light source shading). However, it is affected by translucency.

Figure 8-10 shows the available mesh plot types, along with the effects of choosing Overlay and Wire Frame in combination with contour flooding.

Figure 8-10. Mesh plot types.

8 - 2 **Edge Layer**

An edge plot layer displays the connections of the outer lines (I-J-ordered zones), finite element surface zones, or planes (IJK-ordered zones). The Edge layer allows you to display the edges (creases and borders) of your data. Zone edges exist only for ordered zones or 2D finite element zones. Three-dimensional finite element zones do not have boundaries.
8 - 2.1 Edge Layer Modification

You can control the following attributes from the Edge page of the Zone Style dialog:

- **Show Edges** - Checkbox that determines whether the edges are visible for each active zone.
- **Edge Type** - Right-click to choose borders and/or creases. See Section 8 - 2.2 "Edge Type" below.
- **Edge Color** - Right-click to choose the edge color using the Color Chooser.
- **Line Thickness** - Right-click to choose the edge line thickness. You may choose a predefined setting or enter your own.
- **Index Borders** - Right-click to choose whether to show the corresponding index border: None, Min Only, Max Only, or Both (Min and Max).

In order for the changes made on the Edge page to be visible in your plot, the Edge layer must be turned on. You can turn on the Edge layer using the checkbox in the Plot sidebar.

- For information on using the controls at the bottom of the Zone Style dialog to select zones by name, see the description of these at the end of "Field Plot Modification and the Zone Style Dialog" on page 172.

8 - 2.2 Edge Type

There are two types of edges in Tecplot 360 EX: creases and borders. An edge border is the boundary of a zone. An edge crease appears when the inside angle between two cells is less than a user-defined limit. The inside angle can range from 0-180 degrees (where 180 degrees indicates coplanar surfaces). The default inside angle for determining an edge crease is 135 degrees. You can change the crease angle by going to Plot>Edge Details.

For 2D plots, only edge borders are available, and for FE-volume zones, only edge creases are available.

You can change the Edge Type using the Edge Type column on the Edge page of the Zone Style dialog.
8 - 2.3 Edge Display

For IJ-ordered zones, the available edges are the lines I=1, I=IMax, J=1, and J=JMax.

When the Surfaces to Plot option is set to “Boundary Cell Faces”, “Exposed Cell Faces”, or “Every Surface” for IJK-ordered zones, the edges of the surface areas form a “box” that contains the data. Surfaces to Plot can be set on the Surfaces page of the Zone Style dialog.

When the Surfaces to Plot option on the Surfaces page of the Zone Style dialog is set to one of the planes options, such as I, J, or K-planes, for IJK-ordered zones the edges are the edges of each plane (I, J, or K-plane). By default, all available edges are drawn when the Edge layer is active. You can specify which of the available edges are plotted using the Zone Style dialog.
Mesh Layer and Edge Layer
Contour Layer

Contour plots can be used to show the variation of one variable across the data field. To add a contour layer to your plot, toggle-on “Contour” in the Plot sidebar.

Contour plots can only be plotted with organized data, such as IJ-ordered, IJK-ordered, or FE-data. Refer to Section “Working with Unorganized Datasets” for information on organizing your dataset.

Additional options can be set on the Contour & Multi-Coloring Details (accessed via the Details button to the right of Contour in the Plot sidebar or Plot>Contour/Multi-Coloring) and the Contour page of the Zone Style dialog.

An example of each contour plot type is shown in Figure 9-11.

Figure 9-11. Contour plot types.
 Contour Layer

You can modify the following attributes of your contour plot using the Contour page of the Zone Style dialog:

• Show Contour - Toggle-on to show the contour for the selected zone(s).
• Contour Type - Right-click to choose the contour plot type:
 • Lines - Draws lines of constant value of the specified contour variable.
 • Flood - Floods regions between contour lines with colors from a color map. The distribution of colors used for contour flooding may be banded or continuous. When banded distribution is used for flooding, a solid color is used between contour levels. If continuous color distribution is used, the flood color will vary linearly in all directions. See "Contour Coloring" on page 198 for details.
 • Both Lines and Flood - Combines the above two options.
 • Average Cell Flood - Floods cells or finite elements with colors from a color map according to the average value of the contour variable over the data points bounding the cell. If the variables are located at the nodes, the values at the nodes are averaged. If the variables are cell-centered, the cell-centered values are averaged to the nodes and the nodes are then averaged.

Go to Data>Data Set Info to determine whether the variables are nodal or cell-centered.
• Primary Value Flood - Floods cells or finite elements with colors from a color map according to the primary value of the contour variable for each cell. If the variable is cell centered, the primary value is the value assigned to the cell. If the variable is node located, the primary value comes from the lowest index node in the cell.

Contour plots for streamtraces, iso-surfaces, and slices are controlled by their respective details dialogs and are not discussed here. (Refer to Section 15 - 1.3 "Rod/Ribbon Page", Section 16 - 3 "Iso-Surface Contour and Shade" and Section 14 - 1.3 "Contour Page", respectively.)

In order for the changes made on the Contour page to be visible in your plot, the Contour layer must be active. You can turn on the Contour layer in the Plot sidebar.
If the variables are located at the nodes, the value of the lowest indexed node in the cell is used. When plotting IJK-ordered, FE-brick or FE-tetra cells, each face is considered independently of the other faces. You may get different colors on the different faces of the same cell.

If the variables are cell-centered, the cell-centered value is used directly. When plotting I, J, or K-planes in 3D, the cell on the positive side of the plane supplies the value, except in the case of the last plane, where the cell on the negative side supplies the value.

Go to Data>Data Set Info to determine whether the variables are nodal or cell-centered.

- **Flood By** - Right-click to select either a contour group (C1, C2, C3, C4, C5, C6, C7, or C8) or assign variables to the RGB color map. For contour groups, the associated variable is shown in this column and the menu next to the group number. See Section 9 - 2.1 “Contour Groups” and Section 5 - 5.1 “RGB Coloring” for more information. Applicable only when the contour type includes a flood.
- **Lines By** - Right-click to select which contour group identifies the contour lines (the variable associated with each contour group is also shown). Applicable only when the contour type includes lines.
- **Line Color** - Right-click to choose the contour line color using the Color Chooser.
- **Line Pattern** - Right-click to choose the line pattern for the mesh.
- **Pattern Length** - Right-click to choose the line pattern length as a percentage of frame height. You may choose a preset pattern length or enter your own.
- **Line Thickness** - Right-click to choose the contour line thickness. You may choose a predefined setting or enter your own.
- **Use Lighting** (3D only) - Turn on or off the lighting effects. See Chapter 13: “Translucency and Lighting” for more information on lighting effects.

Options such as contour labels, contour legends, and special settings for contour bands or contour lines are set by the selected contour group (see Section 9 - 2.1 “Contour Groups”).

For information on using the controls at the bottom of the Zone Style dialog to select zones by name, see the description of these at the end of “Field Plot Modification and the Zone Style Dialog” on page 172.

9 - 2 Contour & Multi-Coloring Details

Opening the Contour & Multi-Coloring Details dialog from Plot>Contour/Multi-Coloring or from the Plot sidebar lets you specify:

- **Contour Groups**
- **Contour Levels and Color**
- **Contour Coloring**
- **Contour Bands**
- **Contour Lines**
- **Contour Labels**
- **Contour Legend**
Contour Layer

9 - 2.1 Contour Groups

The Contour & Multi-Coloring Details dialog is shown below. This dialog is divided into five pages. The controls at the top for choosing a contour group and variable are available regardless of what page of the dialog is displayed.

- **Variable** - Assign a variable from your dataset to the active Contour Group (1, 2, 3, 4, 5, 6, 7, or 8). The variable selected here will be contoured subject to the controls in the dialog.
- **1, 2, 3, 4, 5, 6, 7, 8** - Use the [1], [2], [3], [4], [5], [6], [7], and [8] buttons to specify attributes for a specific contour group. Each contour group has its own settings for the contour attributes established in the dialog.

The Contour Group Variables (1-8) can be used to color contour, mesh, scatter, or vector zone layers, as specified in the Color Chooser dialog and the Flood By and Lines By columns on the Contour page of the Zone Style dialog.

9 - 2.2 Contour Levels and Color

A contour level is a value at which contour lines are drawn, or for banded contour flooding, the border between different colors of flooding. Adjust contour levels using the Levels and Color page of the Contour & Multi-Coloring Details dialog (accessed via the Plot sidebar or the Plot menu, or from the Contour Page of the Slice Details dialog).
Contour & Multi-Coloring Details

From the Levels and Color page of the dialog, you can add, subtract, and rearrange contour levels using the top part of the dialog. The bottom part of the dialog allows you to choose or modify the color map to be used for coloring the contour variable.

The minimum and maximum value of the contour value is also displayed here. When the contour variable is calculated from subzone data, one or more of the values displayed may be estimates, which is indicated by (est) next to the affected values.

Contour Level Addition

You can add new levels in one of three ways:

- Enter a value in the text field in the Levels and Color page of the Contour & Multi-Coloring Details dialog and click Add Level to propagate it to the Levels list on the left.
- Add a new range of contour levels to the existing set by clicking Set Levels, then using the Enter Contour Levels dialog as described in "New Contour Level Specification" on page 198.
- Choose from the Toolbar, then click at any location in the contour plot where you would like to add a new contour level. Tecplot 360 EX adds a new contour level that goes through the specified point. By holding down the mouse button you can drag and interactively position the new contour level until you release the button.

Contour Level Removal

You can remove contour levels by:

- Selecting one or more contour levels on the Levels and Color page of the Contour & Multi-Coloring Details dialog, then clicking Remove Selected Levels.
- Selecting from the Toolbar, then clicking any contour line in your contour plot. Tecplot 360 EX deletes the specified contour level, or the nearest contour level to the specified point.
Contour Layer

Contour Level Adjustment

You can interactively adjust a contour level with the tool from the Toolbar. Hold down the Control key, then click-and-drag the contour level you want to adjust. Move the contour to the desired location and release the mouse button. The new value of the contour level can be viewed on the Levels and Color page of the Contour Details dialog.

New Contour Level Specification

You may specify a new set of contour levels by clicking the Set Levels button on the Levels and Color page of the Contour Details dialog. This button calls up the Enter Contour Levels dialog.

You can create contour levels in two ways:

- **Exact levels** - Specify the levels exactly using one of three methods.
 - Min, Max, and Number of Levels (default) - Enter a minimum and maximum level value, together with the number of levels to be distributed equally throughout the range.
 - Min, Max, and Delta - Enter a minimum and maximum level value together with a delta (step-size between levels).
 - Exponential Distribution - Enter a minimum and maximum level value together with the number of levels to be distributed exponentially throughout the range.

- **Approximate levels** - Enter the number of contour levels you want and let Tecplot 360 EX choose their values. The values chosen will be “nice” levels based on the values of the current contour variable.

Contour Coloring

You can choose a built-in color map, edit an existing color map, or create a new color map in the Levels and Contour page.

The built-in color maps cannot be changed. When you begin to modify a built-in color map by moving, adding, or removing control points, the built-in color map is automatically and immediately copied to a custom color map. The copy is given a name ending with the word “modified” and a number, and it is this copy to which further changes apply. Custom color maps can be edited, renamed, or deleted using the gear icon next to the color map menu.

You can create a new color map, then, by first choosing a built-in color map that is close to the color map you want to create (if none is particularly close, any will do) and beginning to modify it. You can then give it a proper name by clicking the gear icon and choosing Rename Custom Color Map.

Custom color maps are automatically saved with layouts. You can also use them in other plots by using the export and import functions on the gear menu.

- **Color Map Control Points** - You can control how colors are distributed across the color map here.
• Adjust a control point - Drag the diamond-shaped control points horizontally to control the intervals between them. The color gradations in the color map will be stretched or compressed as necessary as you move the control points.

• Create a new control point - Right-click a part of the color map where there is not yet a control point, then choose Add Control Point to create a control point there. The control point’s left and right colors will initially be set to the colors in effect at the clicked location.

• Change the control point colors - Right-click a control point to change its left (primary) or right (secondary) color by choosing Set Control Point Color, then choosing the color to be set from the submenu. The Color Chooser appears to let you choose the color to be used. The colormap will consist of a gradient of color between one control point’s right color and the next control point’s left color. (The first and last control points have only right and left colors, respectively.)

• Delete a control point - Right-click a control point and choose Remove Control Point to delete it.

• Color Map - Select the color map to use for contour coloring. The default is “Sequential - Viridis”, a perceptually linear color map from blue to yellow. Click the gear menu to the right of the Color Map menu to rename or delete a color map, or to import or export custom color maps.

• Exporting Custom Color Maps - Saves all custom color maps as a .map file. These can be imported to other projects to maintain consistency.

• Import Color Maps - Opens a browser window to import a .map file. Custom color maps may also be created by using the !$CREATECOLORMAP command in a macro, configuration, layout, map, or stylesheet file.

When exporting, all the color maps that aren’t one of Tecplot’s original set of 45 build-in, immutable, color maps are saved into one .map file.

A short example for loading custom color maps is shown below. Custom color maps may also be loaded via the !$INCLUDEMACRO command. The !$GLOBALCONTOUR command in the script below assigns a color map to one of the eight contour layers. For more information see the Scripting Guide.

```
$!INCLUDEMACRO "[MACROFILEPATH]/Macaw.map"
$!GLOBALCONTOUR 1 COLORMAPNAME = 'Sequential - Macaw'
$!GLOBALCONTOUR 2 COLORMAPNAME = 'Sequential - Macaw'
$!GLOBALCONTOUR 3 COLORMAPNAME = 'Sequential - Macaw'
$!GLOBALCONTOUR 4 COLORMAPNAME = 'Sequential - Macaw'
$!GLOBALCONTOUR 5 COLORMAPNAME = 'Sequential - Macaw'
$!GLOBALCONTOUR 6 COLORMAPNAME = 'Sequential - Macaw'
$!GLOBALCONTOUR 7 COLORMAPNAME = 'Sequential - Macaw'
$!GLOBALCONTOUR 8 COLORMAPNAME = 'Sequential - Macaw'
```

For Tecplot 360 EX 2017 R3 and later, the !$CREATECOLORMAP macro command is allowed in the configuration file. This allows users to define their own color maps and select the default for each contour group. See the Scripting Guide for more information.

• Color Distribution Methods
 • Banded - A solid color is assigned for all values within the band between two levels. (See Section 9-2.3 “Contour Bands”)

199
• **Continuous** - The color distribution assigns linearly varying colors to all multi-colored objects or contour flooded regions. You can vary the default assignment of colors by entering a “Min” or “Max” value for Color Map Endpoints. You may reset the endpoints to the contour variable's min/max (considering the effects of blanking), the contour variable's min/max excluding the effects of blanking, or to the contour level's min/max using the Reset menu to the right of these fields.

• **Approximate Continuous** - Causes each cell to be flooded using interpolation between the RGB values at each node. When the transition from a color at one node to another node crosses over the boundary between control points in the color spectrum, approximate flooding may produce colors not in the spectrum. Leaving this option unchecked is slower, but more accurate.

• **Color Cutoff** - Lets you specify a range within which contour flooding and multi-colored objects (such as scatter symbols) are displayed.

• **Color Map Adjustments** - The following optional adjustments are applied to the color map generated by the above settings.
• **Reversed Color Map** - You can reverse the color map by toggling on “Reverse”. Two plots, one with the color map going in the default direction and one with the color map reversed, are shown in Figure 9-12.

![Figure 9-12](image1)

Figure 9-12. A) Flooded contour plot with default settings. B) Flooded contour plot with a reversed colormap.

• **Repeat Cycles** - You may choose to cycle the color map. This is useful if you have data where there is a great deal of activity in multiple ranges of the contour variable, and you want to cycle through all colors in each region. A plot with the color map cycled twice is shown in Figure 9-13.

![Figure 9-13](image2)

Figure 9-13. A) Flooded contour plot with default settings. B) Flooded contour plot with the color map cycled two times.

9 - 2.3 Contour Bands

When Coloring Distribution for a group is set to “Banded” (via the Levels and Color page of the Contour
Contour Layer

& Multi-Coloring Details dialog), you may customize the color bands on the Bands page of the dialog.

The Bands page of the Contour Details dialog has the following options:

- **Include Zebra Shading** - This effect colors every other band with a specific color (or no color at all).
- **Override Band Colors** - Specific contour bands can be assigned a unique basic color. This is useful for forcing a particular region to use blue, for example, to designate an area of water. You can define up to 16 color overrides.
 - **Override** - Specifies which override is being edited.
 - **Active** - Toggle this checkbox to turn the override on or off.
 - **Color** - Select the color for the override using the Color Chooser.
 - **Minimum, Maximum** - Choose the range which will be overridden to the specified color.
9 - 2.4 Contour Lines

The contour line settings determine how contour lines are drawn for all zones in the active frame's dataset. The settings are established on the Lines page of the Contour & Multi-Coloring Details dialog.

• Use Zone Line Pattern - For each zone, draw the contour lines using the line pattern and pattern length specified in the Contour page of the Zone Style dialog.

If you are adding contour lines to polyhedral zones, the patterns will not be continuous from one cell to the next. The pattern will restart at every cell boundary.

• Skip to Solid - Draw n dashed lines between each pair of solid lines, where n is an integer you enter in the text field Number of Dashed Lines to Draw between Solid Lines.

• Dashed Negative Lines - Draw lines of positive contour variable value as solid lines and lines of negative contour variable value as dashed lines.

9 - 2.5 Contour Labels

Contour labels are labels that identify particular contour levels either by number or by value. You can place contour labels interactively, or have Tecplot 360 EX create them for you automatically. You can also have Tecplot 360 EX create and save a set of contour labels automatically, then interactively add contour labels to this saved set.

The contour plot type must be lines or lines and flood in order to use Contour labels.
Contour labels may be configured in the Labels page of the Contour & Multi-Coloring Details dialog or with the Add Contour Label mouse mode tool from the Toolbar. You can modify the following options using the Labels page of the Contour Details dialog.

- **Show Labels** - Toggle-on “Show Labels” to include contour labels in your plot. You can then label the contour levels by selecting either:
 - Use Contour Number
 - Use Contour Value

- **Label Format** - Use the midsection of the dialog to customize label color, font, and fill settings. (See Section 18 - 1.2 “Font Folders and Fallback” for more information on how fonts work with Tecplot 360 EX.)

- **Generate Automatic Labels (with each Redraw)** - At each Redraw, Tecplot 360 EX creates a new set of contour labels. At any time, you can deselect the “Generate Automatic Labels” (with each Redraw) check box, and Tecplot 360 EX retains the last set of labels generated.

- **Align Labels with Contour Line** - Use the Spacing field to specify the spacing of the contour labels along the contour line, as a percentage of the frame. Use the Level Skip field to specify a skip value between the contour levels to be labeled.

- **Align Next User-Positioned Label** - If the “Align Next User-Positioned Label” is selected, the next label is aligned with the contour line. Otherwise, the label is written with normal, upright text.

- **Number Format** - Use the [Number Format] button to specify the number formatting of the Contour labels. See Section 6 - 7.1 “Specify Number Format” for more details.

- **Clear All Contour Labels** - When “Generate Automatic Labels” is deselected, you can click this button to erase the current set of contour labels.
9 - 2.6 Contour Legend
To include a contour legend, select the Legend page of the Contour & Multi-Coloring Details dialog for the appropriate contour group.

The following options are available:

- **Show Contour Legend** - Select this option to show the contour legend on your plot.
- **Alignment** - Select Vertical or Horizontal.
- **Anchor** - Specify which part of the legend is anchored in the selected position using the Anchor Alignment dialog.
- **Position** - X (%) and Y (%) as percentages of the frame width and height. (You can also move the legend interactively.)
- **Legend Box** - Displays the Legend Box dialog to adjust the appearance of the box around the legend, or turn it off entirely.
- **Separate Color Bands** - Select this check box to separate the color bands in the legend with black lines. Use this option to visually separate similar colors. If this box is not selected, similar adjacent colors may tend to blur together.
- **Resize Automatically** - Automatically skips some levels to create a reasonably sized legend.
- **Include Color Cutoff Levels** - Color bands and labels for levels affected by Color Cutoff are shown in the legend.
- **Label Continuous Colors Position** - If you have selected “Continuous Color Distribution” on the Levels and Color page of the Contour Details dialog, you have three options for placement of labels on the legend:
 - **Contour Levels** - This option places one label for each contour level. See Section 9 - 2.2, “Contour Levels and Color”.
 - **Specified Increment** - Enter a value in the Increment text field.
 - **Color Map Divisions** - Places one label for each control point on the color map.
Contour Layer

- **Level Skip** - Enter the number of levels between numbers on the legend. This also affects the number of levels between contour labels on the plot. Skipping levels on the contour legend compresses the color bar (if one appears); it does not change the spacing between text entries on the legend.
- **Line Spacing** - Enter the spacing between contour legend numbers. This does not change the number of entries in the legend, so a large value here creates a large legend. Use Level Skip to reduce the number of entries in the legend.
- **Text Color** - Affects the color of all text in the legend.
- **Number Format** - Adjust the format of numbers in the legend. See Section 6 - 7.1 “Specify Number Format” for more details on numeric formatting.
- **Number font** - Choose the font used for numbers in the legend, including size and variety (boldface or italic). See Section 18 - 1.2 “Font Folders and Fallback” for more information on how fonts work with Tecplot 360 EX.
- **Show Header** - Toggle-on to include the name of the contour variable in the legend.
- **Header Format** - Adjust the font and height for the legend header or the legend labels, including font size and variety (boldface or italic). (See Section 18 - 1.2 “Font Folders and Fallback” for more information on how fonts work with Tecplot 360 EX.)

Not all fonts have Bold and/or Italic variants. For fonts that do not have these styles, the B and/or I buttons may have no effect.

Anchor Alignment

The Anchor Alignment dialog allows you to specify the anchor point, or fixed point, of the object. As the box grows or shrinks, the anchor location is fixed while the rest of the box adjusts to accommodate the new size. There are nine possible anchor points, corresponding to the left, right, and center positions on the headline, midline, and baseline of the box.
Extract Contour Lines

Legend Box

The Legend Box dialog appears when you click the Legend Box button in the Legend page of the Contour Details dialog.

- **Box Type** - Choose (left to right) No Box, Outline, or Fill. If you choose Outline or Fill, the following options control the appearance of the box.
- **Line Thickness** - Specify the line thickness as a percentage of frame height.
- **Box Color** - Choose a color for the legend box outline.
- **Fill Color** - Choose a color for the legend box fill (Fill mode only).
- **Margin** - Specify the margin between the legend text and legend box as a percentage of the text height.

9 - 3 Extract Contour Lines

Normally, contour lines are derived from the dataset “on the fly” and do not add any data to the dataset. To extract existing contour lines to Tecplot zones, allowing you to retain them even if the contour details are changed, go to Data>Extract>Contour Lines. Your data will be altered by the creation and naming of new zones.

Using the Extract Contour Lines dialog, you have the following options:

- **Create a separate zone for each contour level** - A new zone will be created for each contour line plotted. The number of new zones will equal the number of contour levels. The created zones are FE-line segment type zones.
- **Create a separate zone for each independent line segment in each zone** - With this option you may create many more zones than there are contour levels. New I-ordered line segment zones are created in each source zone for each topologically independent contour line.

After generating the zones, we recommend you activate the Mesh Layer when plotting the new zones.
Vector Layer

You can create vector plots by activating the Vector layer in the Plot sidebar, and specifying the vector component variables. Vector plot attributes can be modified using the Vector page of the Zone Style dialog.

Figure 10-14. A vector plot of the cylinder data (with the edge layer also active).

10 - 1 Vector Variables

When you activate the Vector zone layer (via the Plot sidebar), Tecplot 360 EX checks to see whether vector components have been assigned for the current dataset in the current plot type. If you have not assigned vector components, the Select Variables dialog, shown here, will be launched.

Choose variables by selecting the desired U, V, and W (3D only) variables from their respective drop-downs. You may select any of the current dataset’s variables as any component. You can change the component variables at any time by choosing Vector Variables from the Plot menu.

Once you have selected the Vector check box in the Plot sidebar and have chosen your vector components, your vector plot will appear. If vectors are not visible, refer to Section 10 - 3.1 “Length Page”.
Vector Layer

10 - 2 Vector Plot Modification

You can modify your vector plot attributes using the Vector page of the Zone Style dialog. You can control any of the following attributes from the Vector page of the Zone Style dialog.

- **Show Vector** - Toggle-on to show the vector for a particular zone.
- **Vector Type** - Select from the following options:
 - **Tail at Point** (default) - Draws the tail of the vector at the data point.
 - **Head at Point** - Draws the head of the vector at the data point.
 - **Anchor at Midpoint** - Positions the midpoint of the vector at the data point.
 - **Head Only** - Draws the head of the vector at the data point and does not draw a tail.

Figure 10-15 shows examples of each of the vector plot types.

In order for the changes made on the Vector page to be visible in your plot, the Vector layer must be active (toggled on in the Plot sidebar).

- **Vector Tangents** - Toggle-on to display only the tangent component of vectors, not both tangent and normal components. Tangent vectors are drawn on 3D surfaces only where it is possible to determine a vector normal to the surface. A plot where multiple surfaces intersect each other using common nodes is a case where tangent vectors are not drawn because there is more than one normal to choose from. An example of this would be a volume IJK-ordered...
zone where both the I and J-planes are plotted. If tangent vectors cannot be drawn, then regular vectors are plotted instead.

![Vector Plot Modification](image)

Figure 10-16. Comparison of the Vector Tangent options. A) vectors are drawn with both the normal and tangent components. B) vectors are drawn with only the tangent components.

- **Head Style** - Right-click to choose an arrowhead style for the vectors. Figure 10-17 displays the available styles.
 - Plain (default) - Line segments drawn from the head of the vector.
 - Filled - Filled isosceles triangles with apex at the head of the vector.
 - Hollow - Hollow isosceles triangles with apex at the head of the vector.

![Arrowhead types for vector plots (plain, filled and hollow)](image)

Figure 10-17. Arrowhead types for vector plots (plain, filled and hollow).

- **Line Color** - Right-click to choose the vector color in the Color Chooser dialog.
- **Line Pattern** - Right-click to choose the vector line pattern.
- **Pattern Length** - Right-click to choose the vector line pattern length as a percentage of frame height. You may choose a preset length or enter an exact number.
- **Line Thickness** - Right-click to choose the vector line thickness as a percentage of frame height. You may choose a preset thickness or enter an exact number.

If your data consists of a dense mesh of points, a vector plot may be too crowded to be of much use. You can “thin” the plot by plotting only a certain subset of the data points with the Index Skip attribute from the Points page of the Zone Style dialog.

For information on using the controls at the bottom of the Zone Style dialog to select zones by name, see the description of these at the end of "Field Plot Modification and the Zone Style Dialog" on page 172.
Vector Layer

Use the Vector Details dialog to adjust other Vector layer settings, including length scaling, arrowhead appearance, and reference vector. See Section 10 - 3 "Vector Details".

10 - 3 Vector Details

The Vector Details dialog (Plot>Vector>Details) lets you specify the length of vectors and the appearance of arrowheads. You can also display a reference vector on your plot. These settings are all global to the current frame.

In order for most changes made on the Vector Details dialog to be visible in your plot, you must have the Vector layer toggled on in the Plot sidebar, and the vectors of at least one zone must be visible (see Section 10 - 2 "Vector Plot Modification" on page 210).

The Vector Details dialog has three pages:
- **Length Page**
- **Arrowhead Page**
- **Reference Vector Page**

10 - 3.1 Length Page

The Length page of the Vector Details dialog allows you to adjust the length of displayed vectors.

The following options are available in the Length page of the Vector Details dialog:
- **Relative (grid units/magnitude)** - Specify the vector length as the number of grid units per unit of vector magnitude.
- **Relative (cm/magnitude)** - Specify the vector length as the number of centimeters per unit of vector magnitude.
- **Uniform (%)** - Specify the vector length as a percentage of frame height.
- **Reset Length** - For relative vector length, the default is based on the size of the longest vector. Click Reset Length to change the vector length to a relative vector length with the scale factor expressed in grid units per unit of vector magnitude. Not available when Uniform is selected.
For either of the “Relative” options, the value you specify is a scale factor that is multiplied by the vector magnitude to determine the length of the vector.

Since 3D vectors are plotted in the plane of the screen, a 3D vector’s length will depend on both the vector length settings and the orientation of the vector. The length may be distorted more if the length setting is Relative and the 3D projection is Perspective.

10 - 3.2 Arrowhead Page

You can specify arrowhead sizes as either a fraction of the vector length or in frame units (that is, as a percentage of the frame height). By default, Tecplot 360 EX specifies size as a fraction of the vector length.

The Arrowhead page of the Vector Details dialog has the following options:

- **Angle (deg)** - The arrowhead angle is the angle that one side of the arrowhead makes with the vector, i.e., the apex angle is twice the arrowhead angle. To specify the arrowhead angle, enter a value from 1 to 90, or choose a value from the drop-down, indicated by the down-arrow button.

- **Size arrowhead by**:
 - **Fraction of Length** - Enter a decimal value from zero to ten.
 - **Frame Units (%)** - Enter a percentage value from zero to 100.
10 - 3.3 Reference Vector Page

A reference vector is a vector of specified magnitude placed on the plot as a visual measure of vector length.

The Reference Vector page of the Vector Details dialog has the following options:

- **Show Reference Vector** - Toggle-on to include a reference vector in your plot.
- **Frame Position** - Enter the coordinates of the starting point of the reference vector, as a percentage of the frame width (X) and frame height (Y).
- **Angle (deg)** - Enter the orientation of the vector in degrees from horizontal, or choose a value from the drop-down.
- **Magnitude** - Enter the magnitude of the reference vector. The units correspond to those of the vector components.
- **Color** - Choose a color with the Color Chooser. Multi-color and RGB coloring are not available.
- **Line Thickness (%)** - Enter the desired line thickness, or choose a value from the drop-down.
- **Reset Magnitude** - Resets the magnitude of the reference vector based on the average vector magnitude.
- **Show Reference Vector Label** - Toggle-on to include the magnitude of the reference vector in the label. Select and modify any of the following options:
 - **Font** - Choose or enter the name of the font to be used for the label. Click the B or I buttons to select the bold and/or italic variety of the font. (See Section 18 - 1.2 “Font Folders and Fallback” for more information on how fonts work with Tecplot 360 EX.)
 - **Size** - Enter the size and choose units either of frame height percentage or points.
 - **Number Format** - Click to specify how the number will be formatted using the Specify Number Format dialog. See Section 6 - 7.1 “Specify Number Format” for a discussion of this dialog.
 - **Color** - Choose a color with the Color Chooser. Multi-color and RGB coloring are not available.
 - **Offset (%)** - Choose the spacing between the label and the reference vector as a percentage of frame height.
A plot with a reference vector is shown here. The units for the reference vector were added using a text object (see Section 18.1 “Text”, on page 271).
Vector Layer
Scatter Layer

Scatter plots are plots of symbols at the data points in a field. The symbols may be sized according to the values of a specified variable, colored by the values of the contour variable, or may be uniformly sized or colored. Unlike contour plots, scatter plots do not require any mesh structure connecting the points, this allows you to make scatter plots of irregular data.

To add a scatter layer to your plot, activate the “Scatter” toggle in the Plot sidebar. You can modify your Scatter plot using the Scatter page of the Zone Style dialog and the Scatter submenu of the Plot menu.

11 - 1 Scatter Plot Modification

Once you have loaded your data, you can modify your scatter plot attributes using the Scatter page of the Zone Style dialog. You can control any of the following attributes for a zone or group of zones from the Scatter page of the Zone Style dialog.

For information on using the controls at the bottom of the Zone Style dialog to select zones by name, see the description of these at the end of "Field Plot Modification and the Zone Style Dialog" on page 172.

217
Scatter Layer

In order for the changes made on the Scatter page to be visible in your plot, the Scatter layer must be turned on in the Plot sidebar.

- **Show Scatter** - Right-click to choose whether or not to show the scatter layer for the highlighted zone(s).
- **Symbol Shape** - Right-click to choose one of the following symbol shapes:
 - Square (default)
 - Delta
 - Gradient
 - Left Triangle
 - Right Triangle
 - Diamond
 - Circle
 - Cube (rendered as a square in 2D)
 - Sphere (rendered as a circle in 2D)
 - Octahedron (rendered as a diamond in 2D)
 - Point
 - Character - Use a specified ASCII character from a selected font (as specified in the `Enter ASCII Character` dialog). See also Table 18 - 2.

3D scatter symbols should only be used if your dataset is on the order of thousands of points. If your dataset is large (e.g., millions of points), try using 2D scatter symbols instead for better interactive performance.

- **Scatter Size** - Right-click to select the symbol size either by a constant percentage of the frame height or from a variable in the dataset. For constant size, you may choose a preset size or enter one of your own. (See Section 11 - 2 “Scatter Size/Font” for complete instructions for sizing scatter symbols by variable.)
- **Outline Color** - Right-click to choose a color from the Color Chooser. Besides a constant color, you can also choose:
 - Multi - Each symbol is colored according to the value of the selected contour variable at that data point. Choose a contour group at the bottom of the Color Chooser dialog.
 - RGB - Each symbol is colored according to the values at that data point for the variables assigned to RGB. Click the RGB button at the bottom of the Color Chooser dialog.
- **Line Thickness** - Right-click to choose the thickness of the scatter outlines for each highlighted zone(s), either a preset from the menu or by entering your own value.
- **Fill Mode** - The 3D symbol shapes, Cube, Sphere, and Octahedron are filled with the line color, but the other shapes have other fill modes available. Right-click to choose:
 - None (default)
 - Use Specific Color - Uses the color shown in the Fill Color column.
 - Use Line Color - Matches outline color.
 - Use Background Color - Matches frame color.
• Fill Color - Right-click to select a fill color using the Color Chooser.

Spheres, Cubes, and Octahedrons are always light-source shaded. Spheres are Gouraud shaded, and Cubes and Octahedrons are Panel shaded. Cube edges are aligned with X, Y, and Z-axes. Octahedrons are oriented so one vertex points in the Z-direction and one vertex points in the X-direction. For best appearance of 3D shapes, adjust the Light Source to use Specular Highlighting. Scatter Size and Line Thickness are not available for the point symbol. Points are always one pixel in size.

If your data consists of a dense mesh of points, a scatter plot may be too crowded to be of much use. You can "thin" the scatter plot by plotting only a certain subset of the data points with the Index Skip attribute from the Points page of the Zone Style dialog. The Point scatter symbol allows for quick viewing and panning in 3D plots. It is also a useful tool for identifying features in volume zones.

11 - 2 Scatter Size/Font

Use the Scatter Size/Font dialog (accessed via Plot>Scatter>Size/Font in 2D/3D or Plot>Symbol Font in line plot modes) to choose the base font used for ASCII character symbols and the scatter-size variable used to scale scatter symbols. This dialog is also available by right-clicking a scatter size in the Scatter page of the Zone Style dialog and choosing Select Variable. The Scatter Size/Font dialog is shown below:

The following options are available:

• ASCII Symbol Font - Select a font from the drop-down and optionally a bold and/or italic style. (See Section 18 - 1.3 "Font Folders and Fallback" for more information on how fonts work with Tecplot 360 EX.) For XY and Polar line plots, this is the only option available.

Not all fonts have Bold and/or Italic variants. For fonts that do not have these styles, the B and/or I buttons may have no effect.

• Scatter-size Variable - Select a variable from the drop-down of the dataset's variables. If the Scatter Size field is set to “Size by Variable” on the Scatter page of the Zone Style dialog, this variable is used to calculate the scatter symbol size at each data point. The actual size of each symbol is determined by multiplying the value of the variable at each point by the Size Multiplier. If the Scatter Size field is not set to “Size by Variable”, this field has no effect.

• Size Multiplier - Enter the scale factor that multiplies the values of the Scatter-size Variable to size the scatter symbols. If the Scatter Size field on the Zone Style dialog is not set to “Size by Variable”, this field has no effect. The Size Multiplier multiplied by the scatter variable value

Spheres, Cubes, and Octahedrons are always light-source shaded. Spheres are Gouraud shaded, and Cubes and Octahedrons are Panel shaded. Cube edges are aligned with X, Y, and Z-axes. Octahedrons are oriented so one vertex points in the Z-direction and one vertex points in the X-direction. For best appearance of 3D shapes, adjust the Light Source to use Specular Highlighting. Scatter Size and Line Thickness are not available for the point symbol. Points are always one pixel in size.

If your data consists of a dense mesh of points, a scatter plot may be too crowded to be of much use. You can "thin" the scatter plot by plotting only a certain subset of the data points with the Index Skip attribute from the Points page of the Zone Style dialog. The Point scatter symbol allows for quick viewing and panning in 3D plots. It is also a useful tool for identifying features in volume zones.

11 - 2 Scatter Size/Font

Use the Scatter Size/Font dialog (accessed via Plot>Scatter>Size/Font in 2D/3D or Plot>Symbol Font in line plot modes) to choose the base font used for ASCII character symbols and the scatter-size variable used to scale scatter symbols. This dialog is also available by right-clicking a scatter size in the Scatter page of the Zone Style dialog and choosing Select Variable. The Scatter Size/Font dialog is shown below:

The following options are available:

• ASCII Symbol Font - Select a font from the drop-down and optionally a bold and/or italic style. (See Section 18 - 1.3 "Font Folders and Fallback" for more information on how fonts work with Tecplot 360 EX.) For XY and Polar line plots, this is the only option available.

Not all fonts have Bold and/or Italic variants. For fonts that do not have these styles, the B and/or I buttons may have no effect.

• Scatter-size Variable - Select a variable from the drop-down of the dataset's variables. If the Scatter Size field is set to “Size by Variable” on the Scatter page of the Zone Style dialog, this variable is used to calculate the scatter symbol size at each data point. The actual size of each symbol is determined by multiplying the value of the variable at each point by the Size Multiplier. If the Scatter Size field is not set to “Size by Variable”, this field has no effect.

• Size Multiplier - Enter the scale factor that multiplies the values of the Scatter-size Variable to size the scatter symbols. If the Scatter Size field on the Zone Style dialog is not set to “Size by Variable”, this field has no effect. The Size Multiplier multiplied by the scatter variable value
Scatter Layer

gives the size of the scatter symbol at a point, in units, specified by the following option buttons:

- **Grid Units/Magnitude** - Select this to express the Size Multiplier in terms of grid units per unit of variable magnitude.
- **Cm/Magnitude** - Select this to express the Size Multiplier in terms of screen centimeters per unit of variable magnitude.
- **Recalculate Size** - Select to reset the Size Multiplier to Tecplot 360 EX’s initial value.

11 - 3 Scatter Legends

To include the scatter legend, select “Scatter Legend” from the Scatter sub-menu of the Plot menu. Select the following options in the Scatter Legend dialog:

- **Show Scatter Legend** - Toggle-on to include a scatter legend in the plot.
- **Show Zone Names** - Toggle-on to include zone names in the legend.
- **Text** - Format the text for the legend by choosing a color and font, and specifying the text height. (See Section 18 - 1.2 “Font Folders and Fallback” for more information on how fonts work with Tecplot 360 EX.) Click the (...) button to display the Select Font dialog.
- **Position** - Specify the location of the anchor point of the legend by entering values in the X (%) and Y (%) text fields. Enter X as a percentage of the frame width and Y as a percentage of the frame height.
- **Legend Box** - Select the type of box to draw around the legend (No Box, Outline, or Fill). If you choose Outline or Fill, format the box using the following controls:
 - **Line Thickness** - Specify the line thickness as a percentage of frame height.
 - **Box Color** - Choose a color for the legend box outline.
 - **Fill Color** - Choose a color for the legend box fill (Fill mode only).
 - **Margin** - Specify the margin between the legend text and legend box as a percentage of the text height.
Shade Layer

Although most commonly used with 3D surfaces, shade plots can also be used to flood 2D plots with solid colors, or to light source shade the exterior of 3D volume plots. In 3D plots, zone effects (translucency and lighting) cause color variation (shading) throughout the zone(s). Shading can also help you discern the shape of the plot.

Toggle-on “Shade” in the Plot sidebar to add shading to your plot. Use the Shade page of the Zone Style dialog to customize shading. Refer to Chapter 13: “Translucency and Lighting” for information on translucency and lighting zone effects.

12 - 1 Shade Layer Modification

You can modify your shading attributes using the Shade page of the Zone Style dialog (accessed via the Plot sidebar or Plot>Zone Style).

Shade plots require IJ or IJK-ordered, or finite element data. I-ordered, or irregular data cannot be used to create shade plots.

In order for the changes made on the Shade page to be visible in your plot, the Shade layer must be turned on in the Plot sidebar.
Shade Layer

You can control any of the following attributes from the Shade page of the Zone Style dialog:

- **Show Shade** - Turns the shade layer on or off for each active zone.
- **Shade Color** - Right-click to select the shade color using the Color Chooser. In 2D Cartesian plots, only solid zone flooding is available (i.e. no lighting effects).
- **Use Lighting** - (3D only) Turns the lighting zone effect off or on. When "no" is selected, the shade color is used to uniformly color the zone. Refer to Chapter 13: “Translucency and Lighting” for information on translucency and lighting zone effects.

For information on using the controls at the bottom of the Zone Style dialog to select zones by name, see the description of these at the end of "Field Plot Modification and the Zone Style Dialog" on page 172.
Translucency and Lighting

You can enhance the shade and contour zone layers in 3D plots using Translucency and Lighting Effects (referred to collectively as the “3D zone effects”). The 3D zone effects for streamtraces, slices, and iso-surfaces can be activated using their respective dialogs (accessed via the Plot menu or the Plot sidebar).

For changes related to lighting or translucency to be visible, the desired effect must be toggled-on in the Show Effects section of the Plot sidebar.

The Effects page of the Zone Style dialog, which controls translucency and lighting effects, is shown below.

For information on using the controls at the bottom of the Zone Style dialog to select zones by name, see the description of these at the end of “Field Plot Modification and the Zone Style Dialog” on page 172.
Translucency and Lighting

13 - 1 Translucency

Turn on the translucency zone effect by toggling-on “translucency” in the Show Effects region of the Plot sidebar. When a zone is translucent, you may view objects inside or behind the zone. You can control the translucency of a zone using the Surface Translucency attribute in the Effects page of the **Zone Style** dialog. The level of translucency may be set to a value between 1 (nearly solid) and 99 (nearly invisible). There are nine pre-set percentages ranging from 10 to 90. You may also use the “Enter” option to define a percentage of your own. An example of a translucent plot is shown in Figure 13-1.

Figure 13-1. An example of a plot using translucency.

All surfaces in 3D Cartesian plots may be made translucent. A different translucency may be assigned to individual zones, and may also be assigned to derived objects such as slices, streamtrace ribbons or rods, and iso-surfaces. Use the Effects page of the **Zone Style** dialog to change translucency settings for zones.

13 - 2 Blanking

The Use Value Blanking column on the Effects page of the Zone Style dialog enables you to constrain the display of each zone - that is, instruct whether each zone should obey or ignore any blanking settings present in the plot. To constrain a zone to obey value blanking, select the zone, toggle-on the Use Value Blankling checkbox. To learn more about blanking, see “Blanking” on page 293.

13 - 3 Lighting Effects

There are two types of lighting effects: Paneled and Gouraud. Right-click in the Lighting Effect column of the Effects page to choose either Paneled or Gouraud shading for the selected zone(s).

- **Paneled** - Within each cell, the color assigned to each area by shading or contour flooding is tinted by a shade constant across the cell. This shade is based on the orientation of the cell relative to your 3D light source.

- **Gouraud** - This plot type offers smoother, more continuous shading than Paneled shading, but it also results in slower plotting and larger print files. Gouraud shading is not continuous across zone boundaries unless face neighbors are specified in the data. Gouraud shading is not available for finite element volume zones when blanking is active; the zone's lighting effect reverts to Paneled shading in this case. If IJK-ordered data with Surfaces to Plot is set to Exposed Cell Faces, faces exposed by blanking will revert to Paneled shading.

1. Refer to Section “TECFACE142” in the Tecplot Data Format Guide for details regarding face neighbors.
Three-dimensional Light Source

Figure 13-2 shows two shade plots. The one on the left uses a Paneled lighting effect and the one on the right uses a Gouraud lighting effect.

Figure 13-2. A comparison of the paneled (left) and Gouraud (right) lighting effects.

13 - 4 Three-dimensional Light Source

The light source is a point of light infinitely far from the drawing area. You can open the Light Source dialog (shown below) by selecting the Details button next to Lighting effect toggle the Plot sidebar, or by selecting “Light Source” from the Plot menu.

The Light Source dialog has the following options:

- **Intensity (%)** - Controls the amount of lighting effect produced by the directional light source. An intensity of 100 produces the maximum contrast between lit and unlit areas, and fully lit areas use the full surface color. Lesser values produce less contrast between lit and unlit areas, and fully lit areas use darker colors. An intensity of zero means the light source produces no contrast between lit and unlit areas, and all areas are black.

- **Background Light (%)** - Controls the amount of lighting effect applied to all objects regardless of the light source position. A background light of zero means that areas unlit by the directional light source receive no lighting at all and are entirely black, while areas lit by the directional light source get only the effect of that light. Larger values produce more lighting effect in areas not lit by the directional light source, making these areas show some of the
Translucency and Lighting

Intensity and Background Light are cumulative; they can add up to more than 100 and result in colors lightened beyond the base surface color. For example, reds will become pink and grays will become white.

- **Surface Color Contrast (%)** - Controls the contrast of the color of the light source shaded surfaces before applying lighting effects. A surface color contrast of 100 means that light source shaded surfaces use the full surface color for applying lighting effects. Lesser values mean that the surface color is blended with progressively more white, making light source shaded surface colors lighter. A surface color contrast of zero means that colors are pure white before applying lighting effects (the plot will only be shades of gray).

- **Include Specular Highlights** - Turns on/off specular highlight for all light-source shaded objects in the plot, adding the semblance of reflected light to 3D shaded or flooded objects.
 - **Intensity (%)** - Controls intensity of specular highlights (that is, the amount of reflected light, which controls the amount of whiteness at the peak of the highlight).
 - **Shininess** - Controls shininess of specular highlight (that is, roughly the size and spread of specular highlight).

- **Lighting Optimizations** - Some combinations of lighting type and plot style may result in very slow redrawing of plots. Tecplot 360 EX provides lighting optimizations to avoid such conditions and instead draws a similar, but less computationally-intensive plot. These optimizations are on by default. Turn them off if you need to see the exact effects you have specified. You may want to turn off the graphics cache before turning off those optimizations for plots with large amounts of data. (See "Graphics Cache" on page 464 for information on the graphics cache.)

13 - 4.1 Moving the Light Source

You may move the light source interactively by clicking the sun button next to the lighting effect toggle in the Plot sidebar. With the light source tool active, click or drag in the workspace to position the light source in 3D space. Choose another tool from the toolbar or sidebar to exit this mode.
Slices

You can add slices to volume and surface zones in your plot in order to view X, Y, or Z planes within your data. With IJK-ordered data, you can also add slices on the I, J, or K planes. It is also possible to create slices with arbitrary orientations.

Slices can include lighting effects, contours, meshes, and more. To customize these and other attributes of slices, use the Slice Details dialog, accessible in the Plot sidebar or the Plot menu, or use the context menu and context toolbar.

The context toolbar appears above the context menu when you right-click a slice in your plot. This toolbar allows you to turn on or off the grid, contour, vector, shade, edge, and translucency layers for the selected slice(s). Additionally, you may adjust frequently-used style settings for each layer using the drop-down menu to the right of each, for example selecting a color for the grid (or choosing a variable by which to color it).

Tecplot 360 EX includes a simple interactive method for creating slices. Select the Slice tool in the toolbar or in the Plot sidebar to activate a crosshair cursor, then click in a volume or surface zone to “drop” a slice into that zone. You can then drag the slice to change its position. Refer to “Slice Tool” on page 29 for more information on working with the Slice tool.

For additional control, additional slices, or another way to insert slices derived from the dataset, use the Definition page of the Slice Details dialog. You can open the Slice Details dialog by clicking the details button next to the Slices toggle in the Plot sidebar or by choosing Slices from the Plot menu.

Interactively created slices are derived from the dataset and are defined by a constant X, Y, or Z location (or constant I, J, or K indexes, for IJK ordered zones). Tecplot 360 EX considers this type of slice as part of your plot's style and does not add it to the dataset unless you extract it to a zone (using Data:Extract:Slices).

14 - 1 Interactively Created Slices

Use the Slice Details dialog to customize interactively created slices (that is, slices derived from your dataset). Click the Details button next to the Slices checkbox in the Plot sidebar, or select “Slices” from the Plot menu, to launch the Slice Details dialog. To add slices to your plot in the dialog, toggle-on “Show Group n” in the Slice Details dialog.
The Slice Details dialog includes the following pages: Definition Page, Contour Page, Vector Page, Other Page, and Animate Page.

You must toggle-on "Show Group n" in order for the changes made in the Slice Details dialog to be visible in your plot.

14 - 1.1 Slice Groups

Up to eight different slice groups can be set. Each slice group can use different slice planes or different ranges for the same slice plane. Changing the settings in the Slice Details dialog allows you to make the appearance of each slice group unique. The slice group is specified using the numbers at the top of the Slice Details dialog.

You must toggle-on "Show Group n" (where n = 1-8) in order to include the Slice group in your plot.

14 - 1.2 Definition Page

Use the Definition page of the Slice Details dialog to customize the position of the active slice group (accessed via the Plot sidebar or Plot>Slices).

You can toggle-on “Show Start/End Slices” and use the Start slider to move the first (start) slice, or type in the slice position. Activate the last (end) slice and move it with the End slider. You must toggle-on "Show Group n" in order for the changes made in the Slice Details dialog to be visible in your plot.

The following options are available:

- **Slice Location** - Select which plane the slice is drawn on (X,Y,Z, I, J, or K). You may also choose Arbitrary to place the slice on an arbitrary plane; see “Arbitrary Slice Orientation” on page 229.

- **Show Primary Slice** - Toggle-on to include the primary slice (first slice placed) in your plot. Use the slider or the text field to position the primary slice.

- **Show Start/End Slices** - Toggle-on to include start and end slices in your plot. Use the corresponding sliders or text fields to position the slices.

- **Show Intermediate Slices** - Toggle-on to show intermediate slices evenly distributed between the start and end slices.
 - **Num Slices** - Enter the number of intermediate slicing planes in the text field. (Range 1-5000)
 - **Range for all Sliders** - Click the gear icon next to Show Primary Slice to reveal a flyout dialog (right) that sets the range of the sliders.
 - **Min, Max, Step Size** - Specify the start, end, and step for the slider range.
Interactively Created Slices

- **Reset Slider Range** - Automatically selects the min/max of values based on Slice location or the min/max of the non-blanked values based on Slice location. Non-blanked Min/Max is disabled for I-, J-, and K-Planes.

- **Slice Through** - Choose to slice through volume zones, surface zones, or the surfaces of volume zones.

- **Obey Source Blanking** - When active, slices are subject to any blanking used for the data. When inactive, slices are generated for blanked and unblanked regions. See also Chapter 19: “Blanking”.

- **Show solid plane while dragging** - Toggle-on to show a solid-colored plane in place of the slice while dragging. Since the data within the slice does not need to be drawn to the screen, this can make dragging noticeably faster and smoother, particularly with large data sets.

 The **Show solid plane while dragging** checkbox is a global setting that applies to all slice groups, not just the selected group. It is not available if the slice plane is I, J, or K.

- **Extract Slices** - Select the Extract Slices button to open the Extract Current Slices dialog. See Section 14-2 “Extracting Slices to Zones” for more information.

Arbitrary Slice Orientation

To orient slices in an arbitrary direction, choose “Arbitrary” from the Slice Location menu. As with other slices, you may specify origin points for a primary slice and/or for start and end slices. Slices pass through the indicated origin point(s), so you can easily align the edge of a slice or group of slices along some other feature of the plot, such as an axis. If intermediate slices are activated, they are drawn equally spaced between the slices defined by the start and end origins.

An arbitrarily-oriented slice may be manipulated interactively: When the slice tool is active, a slice-normal interactor appears in the plot.

- Drag the far end of the interactor to change where the normal points and thus the orientation of the slice(s).
- Drag the near end of the slice normal to move the origin point of the slice.
- If multiple slices are active, you may click a slice to move the normal to that slice.

Interactive orientation of arbitrary slices is not available with scaled axes or perspective view. In these cases, the interactor does not appear.

You may adjust the orientation of the slice in small increments using the + and - buttons for the X, Y, and Z axes to rotate the slice a step at a time around an axis.

With an arbitrary slice, you may also:

- **Orient a Slice by Specifying a Normal** - Click the gear icon to enter a normal vector in a flyout dialog.
Slices

- **Orient a Slice by Entering Three Points** - Click the Three Points button to specify three points on the cutting plane using the Enter 3 Points dialog.

- **Orient a Slice by Probing Three Points** - Click the three-point probe icon on the Definition page of the Slice Details dialog to specify three points on the cutting plane by clicking the plot.

Orient a Slice by Specifying a Normal

Click the gear icon to reveal a flyout dialog (right) that lets you choose the orientation of the slice by numerically specifying its normal. A normal vector is established between the slice origin and the specified coordinates, and the slice is oriented perpendicular to this vector, as shown below.

![Arbitrarily-oriented slices in a unit cube. 0, 0, 0 is at back corner; the black dot is the specified normal. Left: normal at 0, 1, 1. Right: normal at 1, 1, 1.](image)

You can also adjust the step value by which the + and - buttons rotate the slice in this flyout.

Orient a Slice by Entering Three Points

You can orient a slice by specifying the coordinates of three points on a plane. These points must form a triangle; they cannot be coincident or collinear.

Click the 3 Points button in the Slice Details dialog to open the Enter 3 Points dialog, shown here, then enter the X, Y, and Z coordinates of the three points. When you click Apply, the origin and normal vector of the slice are recalculated so that the slice plane passes through all three specified points. (The third entered point is used as the slice origin.)

The values in the Enter 3 Points dialog are not updated when the slice orientation is adjusted using the other available methods.

In this dialog, you may also click the three-point probe button to Orient a Slice by Probing Three Points.

Orient a Slice by Probing Three Points

In the Slice Details dialog or the Enter 3 Points dialog, click the three-point probe button, then click three points in your plot. The X, Y, and Z coordinates of the three points are collected in the Enter 3 Points dialog.
dialog. After the third point is clicked, the slice’s origin and normal are recalculated so that the cutting plane passes through all three clicked points. The third point is used as the slice’s origin.

The probe tool keyboard shortcuts may be used when clicking to change the points selected, for example choosing the nearest data point by holding the Control key while clicking. See "Probe Tool" on page 516 for other shortcuts.

14 - 1.3 Contour Page

Use the Contour page to control the contour attributes of the active slice group (determined by the number buttons on the top of the page).

The following options are available:

- **Show Contours** - Select this check box to show contours.
- **Contour Type** - Select the contour type from the drop-down. Lines, Flood, Lines and Flood, Average Cell Flood, and Primary Value Flood are available.
- **Flood by** - If you chose contour flooding, select the contour group by which to flood, or RGB flooding.
 - [...] - Use this button to bring up the Contour & Multi-Coloring Details dialog.
- **Contour Lines by** - If you chose contour lines or lines and flood, select the contour group by which to draw the lines.
 - [...] - Use this button to bring up the Contour Details dialog.
- **Line Color** - Choose the line color in the Color Chooser. Multi-Color will color the slice contour lines based on the contour group variable.
- **Line Thickness** - Specify the line thickness as a percentage of the frame width. You may enter a value in the text field, or choose one of the values in the drop-down.
- **Use Lighting Effect** - Select this check box to enable the lighting effect drop-down menu where you may choose “Paneled” or “Gouraud” shading. See Section “Translucency and Lighting” for more details on lighting effects.
- **Use Translucency** - Select this check box to enable the surface translucency text field, where you may set the surface translucency from one (opaque) to 99 (translucent).
14 - 1.4 Vector Page

Use the Vector page of the Slice Details dialog to control the vector attributes of the active slice group (determined by the group number buttons on the top of the page).

The following options are available:

- **Show Vectors** - Select this check box to show vectors.
- **Tangent Vectors** - Select to use tangent vectors for your slices. See Section 10 - 2 “Vector Plot Modification” for more information.
- **Line Color** - Choose the line color from the Color Chooser. Multi-color will color vectors based on the contour group variable. If no contour variable is set for the selected contour group, the Contour Details dialog will appear.
- **Line Thickness** - Specify line thickness as a percentage of the frame height. You may enter a value in the text field, or choose one of the values in the drop-down.
- **Vector Type** - Use this drop-down to set the vector type for your slices. Choose from Tail at Point, Head at Point, Anchor at Midpoint, and Head Only.
- **Vector Head Style** - Use this drop-down to set the vector head style for your slices. Choose from Plain, Filled, and Hollow.

14 - 1.5 Other Page

The Other page of the Slice Details dialog controls the mesh, shade, and edge attributes of the active slice group. (The active slice group is determined by the group number buttons on the top of the page.)

The following options are available:

- **Show Mesh** - Select this check box to show mesh lines.
 - **Color** - Choose the line color in the Color Chooser. Multi-color will color meshes based on the contour group variable. If no contour variable is set for the selected group when selecting Multi-color, the Contour Details dialog will appear.
 - **Line Thickness** - Specify the mesh line thickness as a percentage of the frame width. You may enter a value in the text field, or choose one of the values in the drop-down.
Extracting Slices to Zones

- **Show Shade** - Select this check box to show shading on the slice when Show Contour has not been selected or is set to Lines on the Contour page of this dialog.
- **Color** - Choose the shade color from the Color Chooser. Multi-color and RGB coloring are not available—use flooded contours for multi-color or RGB flooding.
- **Use Lighting Effect** - Select this check box to enable the lighting effect drop-down, where you may choose "Paneled" or "Gouraud" shading.
- **Use Surface Translucency** - Select this check box to enable the surface translucency text field, where you may set the surface translucency from one (opaque) to 99 (translucent). By default, slice translucency is toggled-on at 10 percent when your plot is loaded.
- **Show Edge** - Select this check box to show selected edge lines on all slices.
- **Color** - Choose the edge color from the Color Chooser. Multi-color and RGB coloring are not available.
- **Line Thickness** - Specify the edge thickness as a percentage of the frame width. You may enter a value in the text field, or choose one of the values in the drop-down.

Surface Generation Method - Determines how the surface is generated.
- **Auto** selects one of the surface generation algorithms best suited for the zones participating in the slice generation. "All Polygons" is used if one or more of the participating zones is polytope, otherwise slices use "Allow Quads".
- **Allow Quads** can produce quads or triangles, and the resulting surface more closely resembles the shape of the volume cells from the source zone. Since the quads are not arbitrarily divided into triangles, no biases are introduced, and the resulting surface may appear smoother. This method is preferred when the source zone is FE-Brick or IJK-Ordered and the surface is aligned with the source cells.
- **All Triangles** is an advanced algorithm that can handle complex saddle issues and guarantees that there will be no holes in the final surface. As the surface is composed entirely of triangles, it can be delivered more efficiently to the graphics hardware.
- **All Polygons** is similar to the "All triangles" method except that all interior faces generated as a result of triangulation that are not part of the original mesh are eliminated. This preserves the original mesh of the source zones on the resulting slice.

14 - 1.6 **Animate Page**
See Section 29 - 1.6 “Slice Animation”.

14 - 2 **Extracting Slices to Zones**
Normally, slices are derived from the dataset “on the fly” and do not add any data to the dataset. To extract slices to Tecplot zones, allowing you to retain them even if the slice details are changed, use Data-Extract-Slices.
Slices

In most cases it is not necessary to extract slices to zones, as it is possible to apply most style options directly to a slice. When you need to display multiple sets of slices in various directions, or simply want to “freeze” a slice for some other reason, you may wish to extract at least some of the slices to zones.

Extracting slices has the following options:

- **Group**: Select between an individual group extraction or all active groups extraction, where active means slices visible on the screen.
- **Slice Group**: Select from the dropdown menu which group is extracted to a zone.
- **All Active Slice Groups**: Extracts slice groups that are set to active.
- **Create a zone for each**: Specify how each slice is extracted into single or multiple zones.
 - **Slice**: Extracts each slice to a single zone.
 - **Connected Region**: Extracts each slice to its connected regions. Connected regions are defined by zone boundaries and areas of disconnected meshes.
- **Resulting 1D Zone Type**: Only active when the slice source is not a volume.
 - **1-ordered If Possible**: Creates an 1-ordered zone for each slice zone that is a single connected region.
 - **FE Line Segment**: Creates all extracted linear zones as FE-LineSeg zones.

Values in the extracted slice are nodal unless Contour Type is set to Primary Value flood on the Contour page of the Slice Details dialog. In this case, the value location for the extracted slice is the same as for the source zones.
Streamtraces

A streamtrace is the path traced by a massless particle placed at an arbitrary location in a steady-state vector field. Streamtraces may be used to illustrate the nature of the vector field flow in a particular region of the plot. See Section 21 - 9 “Calculating Particle Paths and Streaklines” for information on adding streaklines and particle paths to your plot.

Because streamtraces are dependent upon a vector field, you must define vector components before creating streamtraces in Tecplot 360 EX. However, it is not necessary to activate the Vector zone layer to use streamtraces.

To add streamtraces to your plot, toggle-on “Show Streamtraces” in the Streamtrace Details dialog or in the Plot sidebar and use either the Add Streamtrace tool in the toolbar or the Plot sidebar, or the Create Streams button on the Position page of the Streamtrace Details dialog, to specify the location of your streamtraces.

When working with the Add Streamtrace tool, click to individual streamtraces, or drag to seed a rake (group) of streamtraces.

To create streamtraces with a format other than Surface Line, select a format from the “Create Streamtraces with Format” drop-down menu on the Position page of the Streamtrace Details dialog.

If you are drawing a rake on concave 3D volume surfaces using the Add Streamtrace tool, hold down the Shift key to draw the rake outside of the data.

There are two main categories of streamtraces:

- **Surface line streamtraces (or streamlines)** - Surface streamtraces are confined to the surface on which they are placed. They can only be placed in zones displayed as a 2D or 3D surface. If you try to place streamlines in a zone displayed as a 3D volume, an error message appears, and no streamlines are drawn. See Section 15 - 1.2 “Lines Page”. When surface streamtraces are placed on a no-slip boundary surface, they will propagate according to the flow field very near the surface (see Section 15 - 2 “Surface Streamtraces on No-slip Boundaries” for more information).

- **Volume streamtraces** - Volume streamtraces can be created in 3D volume zones only (IJK-ordered or FE-volume zones). See Section 15 - 1.3 “Rod/Ribbon Page”. Volume streamtraces are subdivided into three categories:
 - Volume Lines, or volume streamlines.
Streamtraces

- Volume Ribbons, or streamribbons.
- Volume Rods, or streamrods.

If you have added streamtraces to your plot, but cannot see them, go to the Volume page of the Zone Style dialog and verify that Show Streamtraces is set to “Yes”. Refer to Section 7 - 1.3 “Derived Volume Object Plotting” for details.

15 - 1 Streamtrace Details dialog

You can control the style of your streamtraces using the Streamtrace Details dialog (accessed via Plot>Streamtraces or the Details button to the right of the Streamtraces checkbox in the Plot sidebar). These style attributes affect all streamtraces in the active frame, including those already placed. They do not affect extracted streamtrace zones, discussed in Section 15 - 3 “Streamtrace Extraction as Zones”, because these are ordinary ordered zones, and not streamtraces.

In order for the changes made on the Streamtrace Details dialog to be visible in your plot, you must have Show Streamtraces toggled on in the dialog, or Streamtraces toggled on in the Plot sidebar.

The Streamtrace Details dialog has seven pages:
- Placement Page
- Lines Page
- Rod/Ribbon Page
- Animate Page
- Term Line Page
- Integration Page

The dialog includes a checkbox at the top to globally turn the display of streamtraces on or off. This is available on all pages of the dialog and is the same as the corresponding checkbox in the Plot sidebar.
15 - 1.1 Placement Page

Use the Placement page of the Streamtrace Details dialog (accessed via the Plot sidebar or Plot>Streamtraces) to control the next streamtrace or streamtrace rake to be placed.

The following options are available:

- **Create Streamtraces with Format** - Choose the format for the next streamtrace from the drop-down. The options are as follows:
 - **Surface Line** - Two-dimensional and 3D surface streamlines. Surface lines are confined to the surface upon which they are placed. If placed in a 3D volume zone, these streamtraces are not plotted.
 - **Volume Line** - Three-dimensional volume streamline plotted through 3D space. The streamline path is integrated in three dimensions within the 3D volume field.
 - **Volume Ribbon** - Three-dimensional volume streamtrace with a defined thickness that twists in accordance with the local stream-wise vorticity of the vector field: a streamribbon. When you select this option, you should also check the ribbon width on the Rod/Ribbon page of the Streamtrace Details dialog. The width affects all streamtraces, including those already placed. The default width is automatically calculated based on the extent of your data, but it may still be too large. The center of the streamribbon is a 3D volume streamline. Streamribbons have an orientation at each step.
 - **Volume Rod** - Three-dimensional volume streamtrace with a defined thickness and a polygonal cross-section: a streamrod. The cross-section of a streamrod rotates around a volume streamline in accordance with the local stream-wise vorticity. The center of the streamrod is a regular 3D volume streamline. Streamrods have an orientation at each step. As with streamribbons, you should check the rod width on the Rod/Ribbon page of the Streamtrace Details dialog, as well as the number of rod points (three, by default). The number of points indicates the cross-sectional shape of the rod. Three is an

Alternatively, you can add streamtraces using the Add Streamtrace tool. See also "Add Streamtrace" on page 30.
equilateral triangle; four, a square; five, a regular pentagon; and so forth. Like the width parameter, the number of points applies to all streamrods, including those already placed.

- **Seed Streamtraces** - Choose the method for seeding the streamtraces. This will determine the options available in the central portion of the dialog.
 - **Using Streamtrace Placement Tool** - Click on the plot to seed a stream at the clicked point. Click and drag to seed a rake (a series of streamtraces) of the specified number of equally-spaced points along the path.
 - **On Surfaces of Active Zones** - Tecplot 360 EX randomly distributes the specified number of seed points on the active zones.
 - **On Surfaces of Selected Objects** - Tecplot 360 EX randomly distributes the specified number of seed points on the surfaces of the selected objects.
 - **By Entering XYZ Positions** - Specify the placements of the seed point or rake numerically by entering XYZ coordinates in the position fields, which appear when you choose method of placing streamtraces.
 - **By Entering IJK Positions** - Same as above, except you enter IJK coordinates in the position fields. In this case you must also choose a zone.

- **Direction** - Select the stream integration direction from the following options:
 - **Forward** - Select for forward integration from the starting point.
 - **Backward** - Select for backward integration from the starting point. When the streamlines are calculated backwards, the arrowheads still point in the forward direction.
 - **Both** - Select for both forward and backward integration from the starting point. (For streamribbons and streamrods, you should avoid this option.)

- **Number of Seed Points** - Enter the number of seed points here. When placing streamtraces using XYZ or IJK positions, this field is available only when creating a rake; the specified number of streamtraces will be created at equal intervals between the

- **Position fields** (Only for XYZ or IJK Positions) - Specify the position of the start point, or the range of the rake (series of streamtraces), in IJK or XYZ coordinates.
 - **Zone** (Only for IJK) - Select from the drop-down the zone for which the I, J, (and K) indices are being specified.
 - **Create Rake** - Select to identify the starting position as the start of a rake and to activate the Rake Ending Position fields.
 - **Streamtrace Start Position** - Specify the starting position for a single streamtrace, or (if “Create Rake” is selected) the beginning of a rake of streamtraces. There are two or three fields, labeled either X, Y, (and Z) or I, J, (and K). Enter the desired value in each field, or use the up and down arrows to increase or decrease the values.
 - **Rake End Position** (Only if Create Rake is selected) - Specify the end position for a rake of streamtraces. There are two or three fields, labeled either X, Y, (and Z) or I, J, (and K). Enter the desired value in each field, or use the up and down arrows to increase or decrease the values.

- **Create Streamtraces** - Click to seed the streamtrace or rake of streamtraces. Not available when using the streamtrace placement tool; click on the plot instead.

- **Number of Streamtraces** (Information only) - The number of streamtraces currently placed.

- **Delete Last** - Select to delete the last streamtrace or rake placed.
• Delete All - Select to delete all streamtraces in the current plot.

1, 2, 3, 4, 5, 6, 7, 8, 9 - When the Streamtrace tool is selected, press 1-9 to change the number of streamtraces to add when placing a rake of streamtraces.

15 - 1.2 Lines Page
Surface streamtraces or streamlines are confined to the surface on which they are placed. They can only be placed in zones displayed as a 2D or 3D surface. If you try to place streamlines in a zone displayed as a 3D volume, an error dialog appears, and no streamlines are drawn. The following attributes may be set with the Lines page of the Streamtrace Details dialog. You cannot customize streamtraces using the Lines page until after at least one streamtrace has been drawn.

• Show Paths - Toggle-on to include streamtraces in your plot.
• Line Color - Select the color for all streamtraces in the Color Chooser. You may set the color to Multi-color to color the streamtraces by the chosen contour group variable in the same manner as color flooding. (If the contour variable is not currently defined, the Contour Variable dialog appears so that you can define it.) You can use the Multi-color option, for example, to color the streamtraces by the local temperature or by the velocity magnitude. You can also specify RGB coloring.

The following attributes affect surface and volume streamlines:

• Line Thickness - Enter a value, or choose a pre-set value for the streamline thickness (as a percentage of the frame height for 2D lines and as a percentage of the median axis length for 3D surface lines and volume lines), or choose a pre-set value from the drop-down menu.
• Arrows - Toggle-on Show Arrowheads on Lines to display arrowheads along all streamlines (surface and volume) in the active frame. Arrows are not shown on volume ribbons or volume rods. You can also control the following attributes of the displayed arrows:
 • Arrowhead Size - Either enter a value for the arrowhead size (as a percentage of the frame height), or choose a pre-set value from the drop-down menu.
 • Arrowhead Spacing - Enter the distance between arrowheads in terms of Y-frame units. A value of ten percent will space arrowheads approximately ten percent of the frame height apart from each other along each streamline.
Streamtraces

15 - 1.3 Rod/Ribbon Page

The following attributes may be set with the Rod/Ribbon page of the Streamtrace Details dialog. They affect volume ribbons and volume rods only. You cannot customize streamtraces using the Rod/Ribbon page until after at least one streamtrace has been drawn.

- **Show Paths** - Toggle-on to include streamtraces in your plot.
- **Rod/Ribbon Width** - Enter a width for the volume ribbons and volume rods. The width is expressed in grid units. If you want two sets of streamtraces with different widths, you must create them individually by creating a set of streamtraces with a specific width, extracting the set as a zone, and then configuring a new set of streamtraces with the second width. See Section 15 - 3 "Streamtrace Extraction as Zones".
- **Rod Points** - Volume rods have a polygonal cross-section; this parameter tells Tecplot 360 EX what that cross-section should be. (Three is an equilateral triangle, four is a square, five is a regular pentagon, and so on.) If you want two sets of volume rods with different cross-sections, you must create one set and then extract the set as a zone, then configure a new set of streamtraces with the second cross-section. See Section 15 - 3 "Streamtrace Extraction as Zones".
- **Show Mesh** - Toggle-on to display a mesh.
 - **Color** - Select a mesh color in the Color Chooser, or choose a custom color or multi-color.
 - **Line Thickness** - Select a line thickness from the drop-down menu, or enter your own number in the text field.
- **Show Contour Flood** - Toggle-on to display contour flooding.
 - **Flood by** - Select the contour group to flood.
 - [..] - Use this button to display the Contour & Multi-Coloring Details dialog.
- **Show Shade** - Toggle-on to display shading.
 - **Color** - Select a shade color in the Color Chooser. Multi-color and RGB coloring are not available (use contour flooding instead).
 - **Use Lighting Effect** - Toggle-on to enable the lighting effect drop-down menu, from which you can select “Paneled” or “Gouraud” shading.
• Use Surface Translucency - Toggle-on to enable the surface translucency text field, where you can set the surface translucency from one (nearly opaque) to 99 (nearly transparent).

15 - 1.4 Timing Page

Use the Timing page of the Streamtrace Details dialog (accessed via the Plot sidebar or Plots>Streamtraces) to control timed markers for streamlines, and timed dashes for all types of streamtraces. Stream markers are drawn at time locations along streamlines. The spacing between stream markers is proportional to the magnitude of the local vector field.

Stream markers are symbols plotted along streamtrace paths to identify the positions of particles at certain times. Figure 15-1 shows a plot with both streamtrace markers and dashes.

Figure 15-1. Streamtrace markers (top), dashes (bottom), and both (middle).

The spacing between stream markers is proportional to the magnitude of the local vector field. You can adjust the spacing between stream markers by specifying the time interval (or delta) between stream markers. Increasing the delta time will increase the space between stream markers and vice versa. The actual spacing is the product of the local vector magnitude and the specified delta.

You may also select the shape of your stream marker using the pre-set list under the Shape drop-down menu on the Timing page of the Streamtrace Details dialog. Selecting “Other” from the list activates the Enter ASCII Character option, where you may enter an ASCII character to be used as your stream marker.
Streamtraces

To place stream markers or dashes along your streamtraces, open the Timing page of the Streamtrace Details dialog (accessed via the Plot sidebar or the Plot menu).

The Timing page has the following options:

- **Show Markers** - Toggle-on to include stream markers. Stream markers are only available for streamlines (surface and volume). Specify the size, color, and shape of the markers in the fields provided. The default marker shape is a sphere (in 3D plots) or a circle (2D).
- **Show Dashes** - Toggle-on to include stream dashes. The lengths of the dashes and the spaces between the dashes are controlled by the value of Delta. Enter a value into the Dash Skip field to control the number of time deltas used for the "off" sections of the streamtraces.
- **Time Start** - Enter the time at which the first marker should be drawn. A start time of zero means that the first marker is drawn at the starting point. A start time of 2.5 means that the first stream marker is drawn 2.5 time units downstream of the starting point.
- **Time End** - Enter the time after which no more stream markers are drawn.
- **Time Anchor** - Enter the time that a dash is guaranteed to start, provided the start and end time surround the dash.
- **Time Delta** - Enter the time interval that measures the time between stream markers. The actual distance between markers is the product of this number and the local vector magnitude. Click Reset Delta to reset this to the default value.
15 - 1.5 Animate Page

The Animate page controls animation of streamtraces.

You may specify the number of steps per cycle, the number of cycles, and the destination for animation (the screen or a file). Click the Animate button to begin animation and see Chapter 29: "Animation" for further details.

15 - 1.6 Term Line Page

A streamtrace termination line is a polyline that terminates any streamtraces that cross it. The termination line is useful for stopping streamtraces before they spiral or stall. Figure 15-2 shows the cylinder data with some streamtraces terminated by a 2D streamtrace termination line.

Figure 15-2. A streamtrace termination line drawn through surface streamlines. Streamtraces are terminated whenever any of the following occur:

- The maximum number of integration steps is reached.
- Any point where the streamtrace passes outside the available data.
- The streamtrace reaches a point where the velocity magnitude is zero.
You control the streamtrace termination line from the Term Line page of the Streamtrace Details dialog.

From the Term Line page, you can control the following attributes of the termination line:

- **Active Termination Line** - Toggle-on to activate the termination line and terminate any streamtraces that cross it. Toggle-off this option and redraw the plot to view unterminated streamtraces.
- **Draw Stream Term Line** - Click to draw the termination line on the plot. This is the same as choosing the \(\gamma \) button on the toolbar. Click the individual points on the plot that make up the termination line, then double-click to end the line construction.
- **Show Termination Line** - Toggle-on to display the termination line. Toggle-off this option and redraw the plot to display terminated streamlines (if the termination line is active), but not the termination line itself.
 - **Color** - Choose the color of the termination line in the Color Chooser.
 - **Line Pattern** - Choose the pattern for the termination line.
 - **Pattern Length** - The length of the pattern as a percentage of frame height.
 - **Line Thickness** - The thickness of the termination line as a percentage of frame height.

You can select a termination line with the Selector or Adjustor tool. This allows you to interactively move the line (with the Selector), modify the line (with the Adjustor), or delete the line (with either tool).

"Only one termination line can exist at any one time in a given frame. If you draw a second termination line, the first one is automatically deleted."

Termination Lines in the Eye Coordinate System

The streamtrace termination line is drawn in the grid coordinate system, which in 2D Cartesian plots moves with the data as you zoom and translate. In 3D Cartesian plots, the termination line is drawn in what is known as the eye coordinate system. Grid coordinates align with the eye coordinate system, therefore the termination line moves with the data as you zoom and translate, but remains fixed when you rotate the plot.
When you rotate a 3D dataset after drawing a streamtrace termination line, streamtraces previously terminated by the termination line may be terminated at different places, or not terminated at all if the rotated streamtrace no longer intersects the termination line. Figure 15-3 shows a 3D volume plot with streamribbons and a streamtrace termination line. This figure illustrates how the termination points vary as the plot is rotated. Notice that the termination line, being rendered in the eye coordinate system, remains in place on the screen as the plot is rotated.

Tecplot 360 EX uses an adaptive step-size, trapezoidal integration algorithm to calculate streamtraces. This creates the streamtrace by moving it in a series of small steps from the starting point in the direction of (or in opposition to) the local vector field. Each step is only a fraction of a cell or element. Tecplot 360 EX automatically adjusts the step size based on the local cell shape and vector field variation.
Streamtraces

You can control the streamtrace integration by modifying the following parameters in the Integration page of the Streamtrace Details dialog:

- **Step Size** - Enter the initial and maximum step size Tecplot 360 EX uses while integrating through the vector field as a decimal fraction of the local cell or element width. A typical value (and the default) is 0.25, which results in four integration steps through each cell or element. The value for Step Size affects the accuracy of the integration. Setting Step Size too small can result in round-off errors, while setting it too large can result in truncation errors and missed cells.

- **Max Steps** - Enter the maximum number of steps before the streamtrace is terminated. This prevents streamtraces from spinning forever in a vortex, or from wandering into a region where the vector components are very small, very random, or both. If you choose a small Step Size, you should enter a larger Max Steps.

- **Minimum Step Size** - The smallest step size for Tecplot 360 EX to use. Setting this too small results in integration problems. Setting this greater than or equal to the Step Size results in a constant step size.

- **Obey Source Zone Blanking** - When active, streamtraces are generated for non-blanked regions only. When inactive, streamtraces are generated for both blanked and unblanked regions.

During the integration, a streamtrace is terminated if any of the following conditions occur:

- The maximum number of integration steps (Max Steps) have been taken.
- Any point the streamtrace passes outside the available data.
- The streamtrace reaches a point where the velocity magnitude is zero.
- The streamtrace crosses the stream termination line.

When there is a small gap between the zones, streamtraces will terminate at a zone boundary even if there is an adjacent zone into which the streamtraces should proceed. Specifying face neighbors in the data file to connect the zones can reduce this issue. Increasing the minimum integration step size can also ameliorate this problem.
Surface Streamtraces on No-slip Boundaries

15 - 2 Surface Streamtraces on No-slip Boundaries

When surface streamtraces are placed on a no-slip boundary surface, they propagate according to the normal gradient of tangential velocity (proportional to shear stress) near the surface if the currently assigned vector variables of the surface zone are zero or passive. Otherwise, the surface vector values are used to compute the surface streamtraces. If the surface vector variables are zero or passive, the velocity gradient is computed from the data in the surface's parent zone, which must be a 3D volume zone and must be coincident with the no-slip boundary zone. Additionally, the parent zone must be identified in the definition of the surface zone in the data file itself.

For ASCII files, the parent zone may be declared using the following combinations of lines in the header of the wall boundary surface zone:

```
PARENTZONE=<zone number>
AUXDATA Common.IsBoundaryZone = "TRUE"
AUXDATA Common.BoundaryCondition = "Wall"
```

Refer to the Data Format Guide for more information on zone headers in ASCII data files.

15 - 3 Streamtrace Extraction as Zones

Normally, streamtraces are derived from the dataset "on the fly" and do not add any data to the dataset. To extract existing streamtraces to zones, allowing you to retain them even if streamtrace settings are changed, choose Extract>Streamtraces from the Data menu.

If you want all streamtraces of a given format extracted to a single zone, select the toggle-on “Concatenate common streamtraces into one zone” in the Extract Streamtraces dialog. If you select this option, Tecplot 360 EX extracts all surface lines into one zone, all volume lines into another, all volume ribbons into a third, and all volume rods into a fourth. Tecplot 360 EX uses value blanking to blank out the intervals between streamtraces (and between stream dashes). If you do not select this option, each streamtrace is extracted into its own zone.

After you have extracted your streamtraces, you will still see the original streamtraces, which may obscure the plotted streamtrace zones. Once you have extracted the zones, you can delete the original streamtraces by selecting [Delete All] on the Position page of the Streamtrace Details dialog. If timed dashes are active, all extracted streamtraces will be finite element zones. Otherwise, all extracted streamline zones are I-ordered, and extracted volume ribbon and volume rod zones are IJ-ordered.

15 - 4 Streamtrace Errors

Streamtraces will not appear under the following conditions:

- Unorganized data (I-ordered zones). Refer to Section “Working with Unorganized Datasets” for information on organizing unorganized data.
- Zero-valued vectors. Refer to Chapter 10: “Vector Layer” for information on working with vectors.
- The streamtrace was placed outside of the data. If you are drawing a rake on a concave 3D volume surfaces, hold down the Shift key to draw the rake outside of the data.
Inappropriate integration step size. Refer to Section 15.1.7 “Integration Page” for information on integrating streamtraces.
Iso-surfaces

An iso-surface displays a constant value of the contour variable as a surface on your plot. Iso-surfaces require that the data set contains volume zones (IJK-ordered, brick, tetrahedral, or polyhedral zones). You can modify iso-surfaces in the Iso-Surface Details dialog, which you can access by selecting the Details button next to the Iso-surfaces toggle in the Plot sidebar. Or you can open the Iso-Surface Details dialog by selecting "Iso-Surfaces" from the Plot menu. Finally, you may right-click an iso-surface in your plot and use the context menu and toolbar to make quick changes to its settings.

The context toolbar appears above the context menu when you right-click an iso-surface. This toolbar allows you to turn on or off the grid, contour, shade, and translucency layers for the selected iso-surface(s). Additionally, you may adjust frequently-used style settings for each layer using the drop-down menu to the right of each, for example selecting a color for the grid (or choosing a variable by which to color it).

To view changes made in the Iso-surface Details dialog in your plot, you must have "Iso-surfaces" toggled on in the Plot sidebar.

16 - 1 Iso-Surface Groups

You can work with up to eight different iso-surface groups in Tecplot 360 EX. Zone layers or other objects that reference the same group for an attribute show the same plot style for that attribute. Each iso-surface group has its own settings for the attributes set in the Iso-surface Details dialog. Refer to the following sections for details on each attribute. Choose the desired group number from 1-8 at the top of the dialog, then toggle-on the "Show Group n" checkbox to include the corresponding iso-surface group in your plot.

If you have added iso-surfaces to your plot, but cannot see them, go to the Volume page of the Zone Style dialog and verify that Show Iso-surfaces is set to "Yes". Refer to Section 7 - 1.3 “Derived Volume Object Plotting” for details.
16 - 2 Iso-Surface Definition

Use the Definition page of the Iso-Surface Details to control Tecplot 360 EX's rendering of iso-surfaces. Tecplot 360 EX applies the attributes set on this page (and on every page of the dialog) to the Iso-Surface group selected at the top of the dialog next to the Show Group toggle.

The Definition page of the dialog includes the following controls:

- **Show Group n** - Select this check box to display iso-surfaces, where \(n \) can be 1-8.
- **Define Iso-Surfaces using** - Use this drop-down menu to select the desired contour group. Use the nearby gear button to display the Contour & Multi-Coloring Details dialog, where you can define contour groups. (See Section 9 - 2 "Contour & Multi-Coloring Details").
- **Draw Iso-Surfaces at** - Use this drop-down menu to have Tecplot 360 EX draw iso-surfaces at:
 - **Contour Group Levels** - Go to the Contour & Multi-Coloring Details dialog (accessed with the Details gear button) to alter the Contour Levels. Refer to Section 9 - 2.2 "Contour Levels and Color" for details.
 - **At Specified Value(s)** - Specify up to three values of the contour variable at which to draw iso-surfaces.
- **Contour Variable Min/Max** - Indicates the minimum and maximum values of the contour variable. When the contour variable is calculated from subzone data, one or more of the values displayed may be estimates, which is indicated by \(\text{(est)} \) next to the affected values.
- **Surface Generation Method** - Determines how the surface is generated.
 - **Auto** selects one of the surface generation algorithms best suited for the zones participating in the iso-surface generation. "All Polygons" is used if one or more of the participating zones is polytope, otherwise iso-surfaces use "All Triangles" unless the iso-surface is defined by a coordinate variable in which case "Allow Quads" is used.
 - **Allow Quads** can produce quads or triangles, and the resulting surface more closely resembles the shape of the volume cells from the source zone. Since the quads are not arbitrarily divided into triangles, no biases are introduced, and the resulting surface may appear smoother. This method is preferred when the source zone is FE-Brick or IJK-Ordered and the surface is aligned with the source cells.
 - **All Triangles** is an advanced algorithm that can handle complex saddle issues and guarantees that there will be no holes in the final surface. As the surface is composed entirely of triangles, it can be delivered more efficiently to the graphics hardware.
 - **All Polygons** is similar to the "All triangles" method except that all interior faces generated as a result of triangulation that are not part of the original mesh are eliminated. This preserves the original mesh of the source zones on the resulting iso-surface.
- **Obey Source Zone Blanking** - When active, iso-surfaces are generated for non-blanked regions only. When inactive, iso-surfaces are generated for blanked and unblanked regions.
The Contour and Shade page of the Iso-Surface Details dialog controls the contour and shade style settings for all iso-surfaces. (These styles act independently of the style assigned to zones by the Zone Style dialog.) Tecplot 360 EX applies the attributes set on this page (and every page of the dialog) to the Iso-Surface group selected at the top of the dialog next to the Show Group toggle.

The Contour and Shade page of the dialog includes the following controls:

- **Show Contour** - Toggle-on “Show Contour” to display contours on iso-surfaces.
- **Contour Type** - Select the contour type from the drop-down. Lines, Flood, Lines and Flood, Average Cell Flood, and Primary Value Flood are available.
- **Flood by** - If you chose contour flooding, select the contour group by which to flood the contours, or select RGB flooding. Use the nearby gear button to bring up the Contour & Multi-Coloring Details dialog, where you can define contour groups. (See Section 9.2 “Contour & Multi-Coloring Details”.)
- **Contour Lines by** - If you chose contour lines, select the contour group by which to draw lines. Use the nearby gear button to display the Contour & Multi-Coloring Details dialog to define contour groups.
- **Line Color** - If you chose contour lines, click Line Color to select a line color in the Color Chooser.
- **Line Thickness** - If you chose contour lines, select a contour line thickness from the drop-down menu, or enter your own number in the text field.
- **Use Lighting Effect** - Toggle-on to enable the lighting effect selected in the Light effect drop-down menu.
- **Show Shade** - Toggle-on to display shading on iso-surfaces.
- **Color** - Select a shade color using the Color Chooser.
- **Use Lighting Effect** - Toggle-on to enable the lighting effect selected in the Light effect drop-down menu.
- **Effects**:
 - **Lighting Effect** - Select between Paneled or Gouraud shading.
 - **Use Translucency** - Toggle-on to enable the surface translucency text field, where you may set the surface translucency from 1 (nearly opaque) to 99 (nearly transparent).
16 - 4 Iso-Surface Mesh and Vector

The Mesh and Vector page of the Iso-Surface Details dialog controls the mesh and vector style settings for all iso-surfaces. (These styles act independently of the style assigned to zones by the Zone Style dialog.) Tecplot 360 EX applies the attributes set on this page (and every page of the dialog) to the Iso-Surface group selected at the top of the dialog next to the Show Group toggle.

The Mesh and Vector page of the dialog includes the following controls:

- **Show Mesh** - Toggle-on “Show Mesh” to display the mesh on iso-surfaces.
 - **Color** - Select a mesh color in the Color Chooser.
 - **Line Thickness** - Select a mesh line thickness from the drop-down menu, or enter a number in the text field.
- **Show Vectors** - Toggle-on “Show vectors” to display the vectors on iso-surfaces.
 - **Tangent Vectors** - Select to use tangent vectors for your iso-surfaces. See Section 10.2 “Vector Plot Modification” for more information.
 - **Line Color** - Choose the line color from the Color Chooser. Multi-color will color vectors based on the contour group variable. If no contour variable is set for the selected contour group, the Contour Details dialog will appear.
 - **Line Thickness** - Specify line thickness as a percentage of the frame height. You may enter a value in the text field, or choose one of the values in the drop-down.
 - **Vector Type** - Use this drop-down to set the vector type for your iso-surfaces. Choose from Tail at Point, Head at Point, Anchor at Midpoint, and Head Only.
 - **Vector Head Style** - Use this drop-down to set the vector head style for your iso-surfaces. Choose from Plain, Filled, and Hollow.

16 - 5 Iso-Surface Animation

Refer to Section 29.1.4 “Iso-surfaces Animation”.
16 - 6 Iso-Surface Extraction

Normally, iso-surfaces are derived from the dataset “on the fly” and do not add any data to the dataset. To extract existing iso-surfaces to Tecplot zones, allowing you to retain them even if the contour variable is changed, select Extract Iso-Surfaces from the Data menu.

When you click Extract, one new iso-surface zone is created for each iso-surface visible in your plot. All of the variables in the dataset are interpolated from the 3D volume zones to the data points of the iso-surfaces.

Iso-surface zones are FE-surface quadrilateral element-type zones, regardless of the original 3D volume zone types. The mesh of the iso-surfaces is derived from the mesh of the original zones so that, in regions where the original mesh was coarse, the iso-surface mesh is coarse, and where the original mesh was fine, the iso-surface mesh is fine.

After creating the new iso-surface zones, it is often a good idea to turn off or reconfigure the current settings for iso-surfaces because the new zones will occupy the same physical space as the original iso-surfaces.
Iso-surfaces
Aaxes

Tecplot 360 EX automatically enables the axes for 3D, 2D, XY, and Polar plot types. There are five distinct sets of axes, one for each plot type. When the axes are generated, the axis labels, position, spacing, and tick mark labels are created. You can adjust any of these settings by using the Axis Details dialog (accessed via the Plot menu). Each page of the Axis Details dialog controls a different aspect of the axis, and each page is available for each axis.

17 - 1 Axis Display

Use the “Show Axis” toggle in the Axis Details dialog to turn on an axis display. By default, displaying an axis shows the axis line, tick marks, tick mark labels, and title for the axis. It is possible to disable any of these components separately, including the axis line.

To edit an axis from the Axis Details dialog, use the axis buttons ([X], [Y], [R], etc.) at the top of the dialog to indicate which axis you are working with. To edit a different axis, select a different axis button.

17 - 2 Axis Variable Assignment

For 2D and 3D Cartesian plots, Tecplot 360 EX initially assigns the first and second variables in the dataset to the X- and Y-axes, respectively. For 3D axes, the third variable in the dataset is assigned to the Z-axis.

To change variable assignments for 2D and 3D axes, select “Assign XY” or “Assign XYZ” from the Plot menu. For line plots, assigning axis variables is part of defining the mappings. See Chapter 6: “XY and Polar Line Plots” for more information.

The axis range may be modified using the Range page of the Axis Details dialog, accessed via the Plot menu or by right-clicking an axis in a plot. See Axis Range Options for XY and 2D/3D Plots and Axis Range Options for Polar Plots.

When working with axis ranges, please keep the following definitions in mind:
• **Axis Range** - Specifies the minimum and maximum data values displayed along the axis. The range for an axis fits the value of the first variable assigned to that axis. If you deactivate the current layer and activate another layer, it may be necessary to reset the axis range.

• **Axis Length** - Specifies the physical length of the axis on the screen or paper.

• **Axis Scale** - Specifies the ratio of the axis length to the axis range.

17 - 3 Axis Range Options for XY and 2D/3D Plots

This section discusses the options for XY Line, 2D Cartesian, and 3D Cartesian plots that can be found on the Range page of the **Axis Details** dialog.

The Range page has the following options:

• **Show Axis** - Toggle-on this checkbox to show the selected axis (e.g.) on the plot. Use the buttons [X], [Y], etc. to the right of this checkbox to select the axis to show.

• **Min** - Enter the minimum value of the axis range.

• **Max** - Enter the maximum value of the axis range.

• **Reset Range** - Reset the **Max** and **Min** fields by selecting one of three options from the drop-down menu:

 • **Reset to Nice Values** - Sets the range to slightly larger than the current axis variable range in order to begin and end the axis at major axis increments.

 • **Set to Variable Min/Max** - Sets the range to the minimum and maximum variable values, considering the effects of blanking.

 • **Make Current Values Nice** - Rounds the axis range to the nearest major axis increment.

• **Preserve axis length when changing range** - If toggled-on, and your axes are Independent, changes to the X to Y Ratio will affect the axes’ range, but not their scale. Toggle-off to change both the axis range and axis scale simultaneously. See **Figure 17.4** for an illustration of the difference.

• **Use log scale** - The X and Y axes of XY Line plots can have a linear scale (default) or a logarithmic scale. When “Auto Spacing” is selected with logarithmic scale, large numbers are displayed in scientific notation (i.e., \(3.4\times10^5\)). It is strongly recommended that you use “Auto
Axis Range Options for XY and 2D/3D Plots

Spacing” with log axes. Navigate to the Ticks or Labels page of the dialog, and toggle-on “Auto Spacing” to use this option.

- Reverse axis direction - Toggle on to display the axis from high to low rather than from low to high. Not available for 3D Cartesian plots.
- Dependency - Select whether to set the axes as dependent upon or independent of each other. For XY Line or 2D Cartesian, select “Independent” or “Dependent”.

When a logarithmic scale is being used in an XY Line plot, the axes must be independent.

For 3D Cartesian, select from one of the following options:

- Independent - All axes are independent.
- XY Dependent - The X and Y axes are dependent upon each other. The Z axis is independent.
- XYZ Dependent - Changing the scale on any axis results in a proportional change in scale on the other two axes, so that the specified X to Y Ratio and X to Z Ratio are preserved.

- Ratios (For 2D and 3D plots only)
 - 2D Plots - If “Dependent” is selected, enter the X to Y Ratio.
 - 3D Plots - If “XY Dependent” is selected, enter the X to Y Ratio.
 - 3D Plots - If “XYZ Dependent” is selected, enter the X to Y Ratio and the X to Z Ratio.

- Automatically Adjust Axis Range to Nice Values - Automatically adjusts the axis ranges to the nearest major axis increments.

- Size Factors (For 2D and 3D plots only) - If the axes are XY-dependent, changing the X or Y size factor changes the other. If the axes are XYZ-dependent, changing one size factor changes the other two.
- Reset Size/Dependency - Resets the Dependency controls to their defaults.
Figure 17-4. Preserving length versus preserving scale while changing range (left); preserving length versus preserving scale while changing range in a Polar Line plot (right).

17 - 4 Axis Range Options for Polar Plots

Polar axes are different from any other axis type due to their cyclical nature. Each polar axis (Theta and R) has very different settings, unlike XY or XYZ axes. For the Theta-axis you can change the Theta Mode, Theta Period, and Theta Value on Circle Right; for the R-axis you can change the origin; and for both axes you can clip the data to the axes.

- **Show Axis** - Toggle-on this checkbox to show the selected axis on the plot. Use the buttons [Theta], [R], etc. to the right of this checkbox to select an axis.
- **Min** - Enter the minimum value of the axis range.
- **Max** - Enter the maximum value of the axis range.
- **Reset Range** - Reset the Max and Min fields by selecting one of three options from the drop-down menu:
 - **Reset to Entire Circle** - Sets the range of Theta to encompass an entire circle.
 - **Reset to Nice Values** - Sets the range to slightly larger than the current axis variable range in order to begin and end the axis at major axis increments.
 - **Set to Var Min/Max** - Sets the range to the minimum and maximum variable values.
 - **Make Current Values Nice** - Rounds the axis range to the nearest major axis increment.
- **Preserve length when changing range** - If toggled-on, changes to the Theta to R Ratio will affect the axes’ range, but not their scale. Toggle-off to change both the axis range and axis scale simultaneously. See Figure 17-4 for an illustration of the difference.
- **Use log scale** - The R axis can have a linear scale (default) or a logarithmic scale. When “Auto Spacing” is selected with logarithmic scale, large numbers are displayed in scientific notation (i.e., 3.48x10^5). It is strongly recommended that you use “Auto Spacing” with log axes. Navigate to the Ticks or Labels page of the dialog, and toggle-on “Auto Spacing” to use this option.
• **Reverse axis direction** - Toggle on to display the axis from high to low rather than from low to high. Not available for 3D Cartesian plots.

• **Clip Data to axis** - For Polar Line plots, it is possible to have data that extends beyond the edges of the axes. Use this feature to eliminate data drawn outside of the range of the axes. Clipping data can be set independently for each axis. To activate or deactivate clipping, toggle “Clip Data to Axis” on or off. This feature is illustrated in Figure 17-5.

![Figure 17-5. An example of clipping polar data to an axis.](image)

• **Theta Mode** - By default, the Theta-axis is expressed in degrees mode with a range of 0 to 360. For the Theta axis, you can plot the angles in units of Radians, Degrees, or Arbitrary (where arbitrary sets the Theta range to the maximum and minimum values of the Theta-axis variable).

To set the Theta Mode, choose from the following options:

- 0 - 360 Degrees
- -180 – 180 Degrees
- 0 – 2Pi Radians
- Pi-Pi Radians
- Fit to Var Min/Max

Selecting any of these options changes the Theta Mode, resets the Theta-axis range, and resets the Theta Period. When the Theta Mode is Radians, Tecplot 360 EX draws Theta labels as fractional units of Pi.

• **Theta Period** - The Theta Period specifies the Theta range that is required to create a complete circle. If your Theta Mode is “Degrees”, the Theta Period is forced to 360; for “Radians”, the period is 2 Pi; for “Fit to Var Min/Max”, the period can be set to any value.

• **Theta Value on Circle Right** - The “Theta Value on Circle Right” setting changes the orientation of the Theta-axis. By default, this value is zero, which means that the value zero (or equivalent value, 360 degrees, 720 degrees, and so forth) is displayed on the right hand side of the circle. You can change this value to change the orientation of the axis.

• **R-origin** - The R-origin specifies what value of R is represented at the center of the axis. The effect of changing the R-origin is displayed in Figure 17-6.

![Figure 17-6.](image)
Axes

Figure 17-6. An example of changing the R-origin from a range of 0.3 to 0.6 on a polar plot.

17 - 5 Axis Grid Options

You control the gridlines and precise dot grid from the Grid page of the Axis Details dialog, as shown below. On this page, you can customize the line pattern, pattern length, line thickness, and gridline color for Gridlines and Minor Gridlines.

- **Gridlines** - Match the spacing of tick marks.
- **Minor Gridlines** - Subdivisions of Gridlines.

The spacing of Gridlines is controlled by the tick mark spacing; see Section 17 - 6 “Tick Mark Options” for more information.

- **Gridlines, Minor Gridlines** - To activate Gridlines or Minor Gridlines, toggle-on “Show” under those headings on the Grid page. Both kinds of gridlines have the following options:
 - **Line Pattern** - From the Line Pattern drop-down menu, choose one of the following line patterns: Solid, Dashed, DashDot, Dotted, LongDash, or DashDotDot.
 - **Pattern Length (%)** (Theta axis only) - Select a pattern length from the drop-down menu, or enter in your own.
 - **Thickness (%)** - Select a line thickness from the drop-down menu, or enter your own as a percentage of frame height.
 - **Gridline Color** - Select the color of your gridlines using the Color Chooser.
 - **Gridline Draw Order** - For all axes except 3D, you may specify a gridline draw order. Gridlines may be drawn either first, before any of the other plotting layers, or last, so they overlay any plotting layers.
 - **Gridline Cutoff (R%)** (Theta axis only) Select the point along the R-axis where you want to stop drawing Theta lines.

In a Polar Line plot, the abundance of gridlines at the center may obscure data. You can specify a gridline cutoff along the R-axis of Polar plots on the Grid page of the Axis Details dialog for the Theta-axis.

- **Show Precise Dot Grid** - The precise dot grid is a set of small dots drawn at the intersection of every minor gridline. In line plots, the axis assignments for the first active mapping govern the
Tick Mark Options

precise dot grid. The precise dot grid option is disabled for the 3D Cartesian plots and Line plots when either axis for the first active line mapping uses a log scale.

17 - 6 Tick Mark Options

Tick marks can be placed on each axis and labeled with either numbers or text strings. You can define your tick marks and their placement using the Ticks page of the Axis Details dialog. You can define the tick mark labels using the Label page of the Axis Details dialog.

- **Show Ticks On** - For each plot type, you can display tick marks at different sections of the axis. (This description also applies to Labels and Titles.)

Sketch, XY Line, and 2D Cartesian axes allow tick marks to be displayed in the following areas:

 - **Axis Line** - The line that represents the specified axis.
 - **Grid Border Bottom** - By default, the axis line and grid border left/bottom are in the same position. Grid Border Bottom is the lower left-most position of the grid as defined by the viewport settings on the Area page of the Axis Details dialog.
 - **Grid Border Top** - Grid Border Top is the top right-most position of the grid as defined by the viewport settings on the Area page of the Axis Details dialog.

3D Cartesian axis tick marks can be displayed in the following areas:

 - **Axis Line** - The line that represents the specified axis.
 - **Opposite Edge** - The complimentary line that is opposite the axis line.

Polar R-axis tick marks can be displayed in the following areas:

 - **Axis Line** - The line that represents the R-axis.
 - **All R-axes** - Only available if “Draw Axis in Both Directions” or “Draw Perpendicular Axis” is toggled-on for the R-axis. The All R-axes setting will draw tick marks on the additional axes that are drawn.
 - **Grid Border Start** - Start point of the polar grid area.
 - **Grid Border End** - End point of the polar grid area.

Grid Border Start and Grid Border End are only available if the polar plot does not form a complete circle. If the data forms a complete circle, there is no start or end point on which to draw the ticks.

Polar Theta-axis tick marks can be displayed in the following areas:
Axes

- **Axis Line** - The line that represents the Theta-axis.
- **Inner Circle** - Only available if the minimum (Min) value on the R-axis is greater than the R-origin (Max) value. The Min and Max values are located on the Range page of the **Axis Details** dialog (see **Axis Range Options for Polar Plots**). When this is the case, the center of the polar plot is a circle rather than a single point; therefore, ticks can be drawn on the inner circle.
- **Outer Circle** - The outer edge of the polar grid area.
- **Major Tick Mark Length and Thickness** - Tick mark length and thickness can be set independently for major and minor tick marks using the Length and Thickness fields.
- **Number of Minor Ticks; Length and Thickness** - To specify the number of minor tick marks, you must first toggle-off “Auto Spacing” at the bottom of the page. The number of minor tick marks can be set in the “Number of Minor Ticks” text field in the Minor Ticks section of the dialog. You may also set their length and thickness.

There is not a separate control for showing minor tick marks. To hide minor tick marks, enter zero in the “Number of Minor Ticks” text field.

- **Tick Mark and Label Spacing** - You can control tick mark and label spacing directly, or use “Auto Spacing” (the default) to calculate an optimal spacing for tick marks and tick mark labels. As you change views, particularly in zooming, Tecplot 360 EX recalculates the spacing. With “Auto Spacing” selected, Tecplot 360 EX also calculates the number of minor tick marks for you. Spacing values are shared between tick marks and tick labels. You can change the spacing by adjusting the Auto Spacing, Spacing, and Anchor controls at the bottom of the page under “Tick Mark and Label Spacing”.

17 - 7 Tick Mark Label Options

From the Labels page of the **Axis Details** dialog, you can specify the label attributes for the tick marks of each axis.

- **Show Labels On** - Toggle-on the appropriate options for label display. The available options are dependent on plot type.
Tick Mark Label Options

For Sketch, XY line, and 2D Cartesian line plots, choose from:

- **Axis Line** - When toggled-on, axis labels will display on the selected axis line.
- **Grid Border Bottom** - When toggled-on, axis labels will display on the bottom of the grid.
- **Grid Border Top** - When toggled-on, axis labels will display on the top of the grid.

For 3D Cartesian line plots, choose from:

- **Axis Line** - When toggled-on, axis labels will display on the selected axis line.
- **Opposite Edge** - When toggled-on, axis labels will display on the opposite edge of the plot.

For Polar Line plots, choose from:

- **Axis Line** - When toggled-on, axis labels will display on the selected axis line.
- **Inner Circle** - When toggled-on, axis labels will display on the inner edge of the polar grid area. (Only available if the minimum value on the R-axis is greater than the R-Origin value.)
- **Outer Circle** - When toggled-on, axis labels will display on the outer edge of the polar grid area.

- **Color and Font** - Select the color and font in which you want your labels to appear. (See Section 18.1.2 “Font Folders and Fallback” for more information on how fonts work with Tecplot 360 EX.)
- **Number Format** - Choose how the numbers should be formatted for axis labels using the Specify Number Format dialog.
- **Offset from Line (%)** - Enter the offset of the tick mark labels from the axis.
- **Orient Labels** - Select from the following additional options for label display:
 - **At Angle** - Labels oriented at the angle specified in the Angle drop-down menu.
 - **Parallel** - Labels are parallel to the axis.
 - **Perpendicular** - Labels are perpendicular to the axis.
 - **Angle (deg)** - If Orient Labels is set to “At Angle”, specify the orientation of the tick mark labels relative to the axis. The angle is measured in degrees counter-clockwise from the axis.
- **Show Label as Axis Intersection** [2D, XY, and Polar Only] - Toggle-on to draw a label at the point where two axes intersect. Use this toggle if you have axis labels that are colliding, or are stacked on top of one another at the intersection of two axes.
- **Erase Behind Labels** - Toggle-on to include a rectangle (with the color of the frame background) behind the label to increase the visibility of the label.
- **Label Skip** - Specify the interval between tick mark labels.
- **Tick Mark and Label Spacing** - You can control tick mark and tick mark label spacing directly, or use Auto Spacing (the default) to calculate an optimal spacing for tick marks and tick mark labels. As you change views, particularly in zooming, Tecplot 360 EX recalculates the spacing.

Spacing values are shared between the tick marks and tick labels. You can change the spacing by adjusting the Auto Spacing, Spacing, and Anchor controls at the bottom of the Ticks or Label pages of the Axis Details dialog.
17 - 8 Axis Title Options

An axis title is a text label that identifies the axis. By default, Tecplot 360 EX labels each axis with the name of the variable assigned to that axis.

From the Title page of the Axis Details dialog, you can specify the following attributes for each axis title:

- **Show Title On** - For any plot type, you can specify where to show the axis title. Toggle-on "Axis Line" to show the axis title directly on the corresponding axis. The remaining available options are dependent upon plot type.
 - For 3D - Opposite Edge.
 - For 2D, XY Line or Sketch - Grid Border Bottom or Grid Border Top.
 - For Polar Line plots - Inner Circle or Outer Circle.
- **Color and Font** - Select the color and font in which you would like your axis to appear. (See Section 18 - 1.2 "Font Folders and Fallback" for more information on how fonts work with Tecplot 360 EX.)
- **Offset from Line** - Prevents Tecplot 360 EX from printing your axis title directly on top of the axis. You may specify a positive or negative offset from one side or the other of the axis. An offset of zero prints the edge of the axis title on the axis. You may also adjust the axis title offset using the Adjustor tool from the Toolbar (not available for 3D Cartesian plots).
- **Position along Line** - Specify the start position of the axis title as a percentage of axis length.
- **Title** - Choose one of the following display options:
 - Use Variable Name - Use the axis variable name as the title.
 - Use Text - Enter the desired axis title in the appropriate text field.
17 - 9 Axis Line Options

The actual axis line is shown by default whenever the axis is shown. However, you can hide the axis line without turning off the axis as a whole. To show or hide the axis line, select the Lines page of Axis Details dialog (accessed via the Plot menu).

The options in this dialog vary depending on the plot type and, for some plot types, the axis selected. All of the available options are described below, but not all will be available at any one time.

- **Show Axis Line** - Toggle-on or off to display or hide an axis line.
- **Color** - Select the color of your axis line using the Color Chooser.
- **Thickness** - Select the thickness of your axis line.
- **Show Line on Opposite Edge** (3D Cartesian only) - Toggle-on or off to draw a line on the opposite edge from the selected axis line.
- **Show Grid Border** - Turning on the grid border draws a border around your grid. Toggle-on or off to display or hide the borders of your grid. Not available for 3D Cartesian plots.
 - **Color** - Select the color of your grid border.
 - **Thickness** - Select the thickness of your grid border.
- **Align Axis With** - Select what part of your plot with which you would like to align your axis. Not available for 3D Cartesian plots.
 - Sketch, XY line, and 2D Cartesian plots, choose from **Axis Value**, **Bottom**, **Top**, or **Viewport**. If you choose Axis Value (e.g. Y Value), enter the desired value in the text field. For Bottom or Top, enter the offset from the bottom or top. For Viewport, enter the position within the viewport.
 - Polar plots (Theta-axis), choose from **R Value**, **Inner Circle**, or **Outer Circle**. When aligning with an R Value, you may enter an R-axis Value to specify the position of the axis line. When aligning with the inner or outer circle, specify an offset. With a zero offset, the axis line is on the inner or outer circle, a positive offset moves the axis line outside the grid area. A negative offset moves the axis line within the grid area.
Axes

Polar plots (R-axis), choose from Theta Value, Inner Circle, or Outer Circle. When aligning with a Theta Value, you may enter a Theta axis value to specify the position of the axis line. When aligning with the inner or outer circle, specify an offset. With a zero offset, the axis line is on the inner or outer circle, a positive offset moves the axis line outside the grid area. A negative offset moves the axis line within the grid area.

- **Theta Value** - Align the R-axis with a specific Theta B=Value. The axis is limited to the grid area.
- **Grid Border Start** - Align the R-axis with the start of the grid border. The axis is limited to the grid area.
- **Grid Border End** - Align the R-axis with the end of the grid border. The axis is limited to the grid area.
- **Specific Angle** - Align the R-axis with a specific screen angle. The axis is limited to the grid area.
- **Top of Grid Area** - Align the R-axis with the top of the grid area. The axis may be drawn outside the grid area.
- **Bottom of Grid Area** - Align the R-axis with the bottom of the grid area. The axis may be drawn outside the grid area.
- **Left of Grid Area** - Align the R-axis with the left side of the grid area. The axis may be drawn outside the grid area.
- **Right of Grid Area** - Align the R-axis with the right side of the grid area. The axis may be drawn outside the grid area.

- **Theta-Axis Value** - Specify a Theta-axis value to specify the position of the axis line.
- **Offset (%)** - Enter the offset of the line from the axis.
- **Angle** - Enter the angle of the line from the axis.

- **Draw Axis in Both Directions** - In addition to setting the alignment of the R-axis, you may choose to extend the R-axis by drawing an axis line perpendicular or parallel to the existing axis line. Toggle-on “Draw Axis in Both Directions” to extend the axis line so that it spans the width of the grid area.
- **Draw Perpendicular Axis** - Toggle-on “Draw Perpendicular Axis” to draw an axis line perpendicular to the main axis line.
- **Show Viewport Border** (Polar line plots only) - Toggle-on “Show Viewport Border” to show the viewport border. The viewport border is defined on the Area page of the Axis Details dialog.
 - **Color** - Select the color of your viewport border.
 - **Thickness** - Select the thickness of your viewport border.
- **Show Line on Opposite Edge** (3D Cartesian only) - When toggled-on, axis lines will display on the opposite edge of the plot.
 - **Color** - Select the color of your grid border.
 - **Thickness** - Select the thickness of your grid border.
- **Show Axis Box** (3D Cartesian only) - Toggle-on “Show Axis Box” to display all edges of all axes.
- **Auto 3D Edge Assignment** (3D Cartesian only) - Toggle-on “Auto 3D Edge Assignment” to place the three axis lines so they will not interfere with the drawing of the plot. If toggled-off, you have the option to place the line at any pair of edges, such as Y-Minimum & Z-Minimum, Y-Maximum & Z-Minimum, Y-Minimum and Z-Maximum, or Y-Maximum & Z-Maximum. The available pairs depend on the axis selected to edit.
Grid Area Options

The grid area of your plot is the area defined by the axes. From the Area page of Axis Details, you control whether the grid area or viewport are color-filled. The Area page is shown below.

The Area page has the following options, some of which may not be available depending on plot type and, for Polar line plots, the selected axis:

- **Fill Grid Area** - For Sketch, XY Line, and 2D Cartesian plots, you can alter the size of the grid area by changing the extents of the viewport. (For these plot types, the viewport and grid area are synonymous.) Click the Color button to select the color using the Color Chooser.

 For 3D Cartesian and Polar Line plots, the grid area is altered by changes to the axis ranges.

- **Fill Behind Axes** - Select this option to fill the area behind the axes (your grid area) with a specific color.
- **Fill Color** - Select the color with which to fill your grid area in the Color Chooser.
- **Use Light Source Shading** - Select this option to light source shade the axis planes.
- **3D Axis Box Padding** - Enter the minimum distance from the data to the axis box. Lowering this value does not immediately affect the appearance of the plot, since the existing axes still meet the new constraint; you can use Reset Range on the Range page (see Axis Range Options for XY and 2D/3D Plots) to force the plot to redraw.

- **Fill Grid Area** - Select this option to fill the grid area with a specified color.
- **Fill Viewport** - Select this option to fill the viewport area with a specified color.
- **Viewport Position (%)** - Select the position of the Viewport. The Viewport is the percentage of the entire plot area occupied by the plot grid. Select the location (as a percentage of the entire plot area) in which to place the Left, Right, Top, and Bottom borders of your grid area.
Axes

17 - 11 Time/Date Format Options

The Specify Number Format dialog is available for all plot types, including Sketch. You can use this dialog to display your axis labels in a number of different formats, including Time/Date format. The Specify Number Format dialog can be accessed by going to the Plot>Axis>Label or the Plot>Axis>Range page, and selecting the [Number Format] button. See Section 6 - 7.1 “Specify Number Format” for more information on the Specify Number Format dialog.

You can also display elapsed time, instead of absolute time, on any axis. To do this, the original time/date data in your data file must indicate the elapsed time.)

To specify your axis label using Time/Date format, select “Time/Date” from the Type drop-down menu. Data is read forward from December 30, 1899. Tecplot 360 EX also accepts negative values to support dates back to January 1, 1800.

You can format your labels by entering the available Time/Date codes in the Format field. When entering a format, any combination or subset of the Time/Date formula may be used.

If you use "m" immediately after the "h" or "hh" code or immediately before the "ss" code, Tecplot 360 EX displays minutes instead of the month.

Use the following formula and table to enter your Time/Date codes:

Time Date Formula:

\[\text{years-months-days hours:minutes:seconds} \]

Time/Date Codes:

<table>
<thead>
<tr>
<th>Time/Date Code</th>
<th>Display Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>YY</td>
<td>00-99</td>
</tr>
<tr>
<td>YYYY</td>
<td>1800-9999</td>
</tr>
</tbody>
</table>
Time/Date Format Options

Months

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmmmm</td>
<td>first letter of the month</td>
</tr>
<tr>
<td>m</td>
<td>01-12</td>
</tr>
<tr>
<td>mm</td>
<td>01-12</td>
</tr>
<tr>
<td>mmm</td>
<td>January-December</td>
</tr>
<tr>
<td>mmmm</td>
<td>January-December</td>
</tr>
</tbody>
</table>

Days

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[d]</td>
<td>total number of elapsed days</td>
</tr>
<tr>
<td>d</td>
<td>01-31</td>
</tr>
<tr>
<td>dd</td>
<td>01-31</td>
</tr>
<tr>
<td>ddd</td>
<td>Sun-Sat</td>
</tr>
<tr>
<td>dddd</td>
<td>Sunday-Saturday</td>
</tr>
<tr>
<td>dddD</td>
<td>S,M,T,W,F,S</td>
</tr>
</tbody>
</table>

Hours

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[h]</td>
<td>total number of elapsed hours</td>
</tr>
<tr>
<td>h</td>
<td>0-23 or 1-12</td>
</tr>
<tr>
<td>hh</td>
<td>00-23 or 1-12</td>
</tr>
<tr>
<td>AM/PM</td>
<td>AM or PM</td>
</tr>
<tr>
<td>A/P</td>
<td>AM or PM as “A” or “P”</td>
</tr>
</tbody>
</table>

Minutes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[m]</td>
<td>total number of elapsed minutes</td>
</tr>
<tr>
<td>m</td>
<td>0-59</td>
</tr>
<tr>
<td>mm</td>
<td>00-59</td>
</tr>
</tbody>
</table>

Seconds

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0-59</td>
</tr>
<tr>
<td>ss</td>
<td>00-59</td>
</tr>
<tr>
<td>.0</td>
<td>Tenths</td>
</tr>
<tr>
<td>.00</td>
<td>Hundredths</td>
</tr>
<tr>
<td>.000</td>
<td>Thousandths</td>
</tr>
</tbody>
</table>

a. Codes can be entered as upper or lower case letters; however, letters will be displayed as shown in the display format. Numbers that cannot be formatted as a time or date will be displayed as asterisks.

b. Total number of elapsed days, hours, and minutes are valid for time values greater than or equal to zero, and equal to or less than 1,000,000 days.

c. NOTE: If you enter “AM/PM” or “A/P” in your Time/Date format, the “h” and “hh” hour codes are expressed using a 12-hour clock. Otherwise, hours are expressed in military time (24 hour clock).
Axes

Placing a backslash in front of a y, m, d, or s in the Time/Date formula will keep it from being processed as part of the formula. All characters not part of the Time/Date formula will appear as entered.
For example, "\year yyyy" will appear as "year 2008", as the backslash keeps the first y from being processed as part of the formula.

Examples

To display the time and date on your plot as a "Sat-Jan-05-2008", enter the following code:
\ddd-\mmm-\dd-yyyy
To display the time and date on your plot as a "1-3-08", enter the following code:
\m-d-\yy
To display the time and date on your plot as a "9:30:05 AM", enter the following code:
\h:\m:\s AM
To display an elapsed time, such as"3:10:15", enter the following code:
[d]:hh:mm

17 - 11.1 Microsoft Excel Support

Tecplot 360 EX supports Microsoft Excel1 Time/Date number strings, with the exception of AM/PM time specifications, long day names, and long month names. This support allows you to create number formats in Excel and import them for use with your Tecplot 360 EX plots, or vice versa.

Time/Date number strings can be transferred from Excel to Tecplot 360 EX from Mar 1, 1900 forward.

17 - 11.2 Loading Time/Date Data

You can load time/date data into Tecplot 360 EX in the same way as any other data point. The following methods load time/date data as a floating-point number. (After loading, use Plot>Axis>Labels>Number Format to change the axis format to a time/date display.) The following methods can be used to load time/date data into Tecplot 360 EX.

1. Excel Macro (add-on) This add-on offers more options to load data from Excel. Although it requires installation into Excel, after installing, this method enables quick and simple data loading from Excel into Tecplot 360 EX. Refer to Section B - 1 “Excel Add-in” for details.
2. Text Spreadsheet Loader For loading delimited files, use this loader. Refer to Section 4 - 22 “Text Spreadsheet Loader” for instructions. Time/date data included in this format must be represented by the floating point number used by Excel and Tecplot 360 EX. (See Section 2 - 6 “Time and Date Representation” in the Data Format Guide for more information on this formatting.)

1 Tecplot 360 EX does not currently support Mac Excel "1904" format.
Text, Geometries, and Images

You can enhance any plot, or create a drawing from scratch, using Tecplot 360 EX’s text and drawing tools. Tecplot 360 EX provides tools for creating polylines, circles, ellipses, squares, rectangles, and text. You can also insert BMP, JPEG, or PNG images to enhance your plot.

A plot that contains only these add-on elements and no plotted data is referred to as a sketch and can be created with the “Sketch” plot type. Figure 18-1 shows a sketch created with Tecplot 360 EX drawing tools.

Figure 18-1. A sketch created with Tecplot 360 EX.

18 - 1 Text

To add text to your plot or sketch, either select the Text tool from the Toolbar or Text from the Insert menu. Click anywhere in a frame to indicate the location of the text. Use the Text Details dialog to enter and modify text and its formatting. To create additional text elements, you may click in the Tecplot 360 EX workspace at the desired location of the next text element while the dialog is open.

You can edit existing text by first choosing the Selector tool, then double-clicking the text element to open the Text Details dialog. Alternatively, right-click the text element and many of the text attributes can be changed in the context menu as well as selecting Text Details.
18 - 1.1 Text Details

The Text Details dialog has the following options:

- Type the desired text in the large text field at the top of the dialog.
- You can embed Greek, Math, and User-defined characters into English-font strings by enclosing them with text formatting tags, together with the keyboard characters. See Section 30.4 “Custom Character and Symbol Definition” on page 467 for more information on defining your own characters.

The text formatting tags and their effects are as follows (format tags are not case sensitive and may be either upper or lower case):

- `...` - Boldface
- `<i>...</i>` - Italic
- `<verbatim>...</verbatim>` - Verbatim
- `_{...}` - Subscripts
- `^{...}` - Superscripts
- `<greek>...</greek>` - Greek font.
- `$...$` - Math font.
- `<userdef>...</userdef>` - User-defined font.
- `<helvetica>...</helvetica>` - Helvetica font.
- `<times>...</times>` - Times font.
- `<courier>...</courier>` - Courier font.

Embedding and escaping special characters work only in English-font text; they have no effect in text created in Greek, Math, or User-defined character sets.

You can produce subscripts or superscripts by enclosing any characters with `_{...}` or `^{...}`, respectively. Tecplot 360 EX has only one level of superscripts and subscripts; expressions requiring additional levels, such as e^x, must be created by hand using multiple Tecplot 360 EX text strings. If you alternate subscripts and superscripts, Tecplot 360 EX positions the superscript directly above the subscript. Thus, the string $a_{\text{sub}}b^{\text{sup}}$ produces a_b. To produce consecutive superscripts, enclose all superscript characters in a single pair of tags. The string $x_{\text{sup}}(a+b)^{\text{sup}}$ produces $x^{(a+b)}$ in your plot.

Not all fonts have Bold and/or Italic variants. For fonts that do not have these styles, the `` and/or `<i>` tags may have no effect.
To insert a tag into text literally, precede the first angle bracket with a backslash ("\"). To insert a backslash in the text, just type two backslashes ("\"). In ASCII input files, the number of backslashes must be doubled (two to precede a special character, four to create a backslash) because the Preplot program also requires a backslash to escape special characters.

- **Font**: Select a font for the text. (See Section 18.1.2 “Font Folders and Fallback” for more information on how fonts work with Tecplot 360 EX.) You may click the B and I buttons as shortcuts for selecting a bold, italic, or bold italic variation of the chosen font.

Not all fonts have Bold and/or Italic variants. For fonts that do not have these styles, the B and/or I buttons may have no effect.

- **Size**: Select a character height unit from the drop-down menu, then enter the size in the associated field:
 - Points: Specify character height in points. One point is 1/72nd of an inch.
 - Frame%: Specify character height as a percentage of frame height.
 - Grid: Specify character height in grid units. (Available only when Position By is set to Grid.)
- **X/Y Position**: Choose the position of the text element’s anchor point (see Anchor button).
- **Position by**: Choose to position the text using the frame or grid coordinate system.
- **Macro function**: Enter the name of the macro function to be linked to this text object. See Section 18.3 “Linking Text and Geometries to Macros” for more information. To run the linked macro function, hold down Control while right-clicking the text object in the workspace. (On Mac OS X, hold down Command while right-clicking.)
- **Color**: Select a color for the text using the Color Chooser.
- **Angle (deg)**: Specify the orientation of the text relative to the axis. The angle is measured in degrees counter-clockwise from horizontal. Horizontal text is at zero degrees; vertical text is at 90 degrees. You can either enter an angle in degrees, or select from one of the preset angles in the drop-down.
- **Line Spacing**: Enter the line spacing when multiple lines of text are entered: 1 for single-spacing, 2 for double-spacing, etc. Fractional values are permitted.
- **Text Box**: Opens the Text Box dialog to specify the appearance of the box around the text (if any). See Section 18.1.3 “Text Box” for more information.
- **Anchor**: Choose how the text is aligned with the anchor point. As new text is added, the text expands away from the anchor point chosen in the Anchor Alignment dialog.

18.1.2 Font Folders and Fallback

Tecplot 360 EX supports TrueType (.ttf) and OpenType (.otf) fonts. Fonts installed in the standard folder for fonts on your operating system (for example, C:\Windows\Fonts on a Windows computer) appear in the font selection menu in the **Select Font** dialog and in other places where you choose a font.

If the fonts you want to use with Tecplot 360 EX are installed in other folders, or if your operating system does not have a default system location for fonts, you can edit the tecplot.cfg file in your Tecplot 360 EX installation directory, using Notepad or another text editor, to indicate the directories where the fonts you want to use are installed. Add a line like one of the following:

```bash
$!Interface FontPath = "C:\font\path"
$!Interface FontPath = "C:\Windows\Fonts" "C:\More Fonts"
```
$!Interface FontPath = '"/first/path/""/second/path""/third/path"'

Replace the paths with the paths to the folders that contain the fonts you wish to use, taking special note of the single quote marks that wrap the entire list of folders and the double quotes around each folder's path. You can use just one or several font folders. As shown in the second example, if you wish to use your computer's standard fonts as well as fonts from other folders, you must manually specify the standard font folder along with the others.

If you open a layout that specifies a font that Tecplot 360 EX does not have access to on your system, the text "falls back" to Times. If the layout specifies a style you do not have (for example, a bold version of a font you have but which does not include a bold version on your system), the correct font is used, but the style (boldface, in this case) is not displayed.

It is possible to choose a font by typing its name directly into the font selection field in the Text Details dialog and other places where a font can be chosen, instead of choosing the desired font from the provided menu. If the font you specify in this way is not available to Tecplot 360 EX on your system, the text will appear as Times on your computer. However, the name you typed is recorded when you save a layout, and the text appears in the correct font if the layout is later opened on a computer on which the font is available.

18 - 1.3 Text Box

Use the Text Box dialog (accessed via the Text Box button in the Text Details dialog) to control the appearance of a box around the text. The following options are available:

- **None** - Select this option to specify that no box is drawn around the text.
- **Outline** - Select this option to specify an outline box around the text. The box is not filled, so any underlying Tecplot 360 EX object can still be seen.
- **Filled** - Select this option to specify a filled box around the text. A filled box is opaque; if you place it over another Tecplot 360 EX object, the underlying object cannot be seen.
- **Line Thickness (%)** - Specifies the thickness of the text box as a percentage of the frame width.
- **Box Color** - Select the box outline color from the Color Chooser dialog.
- **Fill Color** - Select the box fill color from the Color Chooser dialog.
- **Margin** - Specify the margin as a percentage of the text character height.

18 - 1.4 Special Characters

Tecplot 360 EX supports Unicode text encoding. Your operating system should provide ways to enter Unicode text in non-English character sets, and any Unicode characters you can enter using these methods will display and print correctly in Tecplot 360 EX.

If your system does not have the ability to enter Unicode text, characters in the ordinal range 160-255 provide support for most of the major European languages. The following table shows the characters in this range supported by Tecplot 360 EX. Note that the two right-hand columns represent the extended
European characters. Text formatting tags for Greek, Math, or User-defined characters work only with characters in the range 32-126 and is not available for the extended European characters. If your system is configured for European text entry, the European characters should appear and print automatically with no additional setup.

Table 18 - 2: Character Indices in Tecplot 360 EX.

If your keyboard is not configured to produce a specific character, you can generate it by including the sequence \nnn in your text, where nnn is from the character index table found in the table. For example, if your keyboard will not generate the é and you want to show the word "latté," enter:

latté

Custom Characters

You can create symbols, characters, and even custom fonts for use in Tecplot 360 EX. See Section 30 – 4, “Custom Character and Symbol Definition” for further instructions.
18 - 1.5 Dynamic Text

You can add special placeholders to text that changes with the data or the display environment. For example, you can add a date placeholder that Tecplot 360 EX will replace with the current date at each redraw. Similarly, you can add a zone name or variable name placeholder.

For placeholders that represent an attribute of a Tecplot 360 EX object of which Tecplot 360 EX supports multiple instances (such as a frame, a dataset, or a zone), the placeholder by default refers to the current or active instance: for example, to the active frame if the placeholder refers to an attribute of frames. If there is no obvious default or active instance, the placeholder by itself usually refers to the first instance.

For such placeholders, you may specify the desired instance of the referenced type of object by enclosing an index in square brackets immediately following the placeholder name. For example, \&(AUXZONE[3]:BC) refers to the zone auxiliary data named BC in the third zone.

In most cases, the index may also be written as ACTIVEOFFSET=nn to specify the nth active instance of an object type. For example, \&(ENDSLICEPOS[ACTIVEOFFSET=2]) refers to the end position of the second active slice group.

For placeholders that represent the minimum or maximum value of a variable, the text (est) is appended to the displayed value if it is an estimate calculated from variables in a subzone data file.

The complete list of placeholders is as follows:

<table>
<thead>
<tr>
<th>Variables</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>&(\text{AUXDATASET:})name</td>
<td>The value of the named auxiliary data attached to the dataset.</td>
</tr>
<tr>
<td>&(\text{AUXFRAME:})name</td>
<td>The value of the named auxiliary data attached to the frame.</td>
</tr>
<tr>
<td>&(\text{AUXPAGE:})name</td>
<td>The value of the named auxiliary data attached to the page.</td>
</tr>
<tr>
<td>&(\text{AUXVAR[nnn]:})name</td>
<td>The value of the named auxiliary data attached to variable nnn.</td>
</tr>
<tr>
<td>&(\text{AUXLINEMAP[Q]:})name</td>
<td>The value of the named auxiliary data attached to linemap Q, where Q = either nnn or ACTIVEOFFSET = nnn and nnn = linemap number. If ACTIVEOFFSET= is used, the integer value indicates the first linemap associated with the nnnth active fieldmap.</td>
</tr>
<tr>
<td>&(\text{AUXZONE[Q]:})name</td>
<td>The value of the named auxiliary data attached to Q, where Q = either nnn or ACTIVEOFFSET = nnn and nnn = zone number. If ACTIVEOFFSET= is used, the integer value indicates the first zone associated with the nnnth active fieldmap.</td>
</tr>
<tr>
<td>&(\text{AXISMAX})n</td>
<td>Maximum value of the current n-axis range, where n is one of: Aa, R, X, Y, or Z.</td>
</tr>
<tr>
<td>&(\text{AXISMIN})n</td>
<td>Minimum value of the current n-axis range, where n is one of: Aa, R, X, Y, or Z.</td>
</tr>
<tr>
<td>&\text{BYTEORDERING}</td>
<td>Displays the platform's byte ordering (INTEL or MOTOROLA).</td>
</tr>
<tr>
<td>&\text{DATE}</td>
<td>The current date, in the format dd Mmm yyyy.</td>
</tr>
<tr>
<td>&\text{DATASETFNAME[nnn]}</td>
<td>Filename of the nnnth file associated with the current dataset. If nnn is omitted, then all dataset filenames are shown, separated by new lines.</td>
</tr>
<tr>
<td>&\text{DATASETITLE}</td>
<td>The current dataset title.</td>
</tr>
<tr>
<td>&(\text{ENDSLICEPOS[})slice group or activeoffset(]})</td>
<td>The position of the ending slice plane.</td>
</tr>
<tr>
<td>&\text{EXPORTISRECORDING}</td>
<td>Returns "YES" if recording is active, otherwise returns "NO".</td>
</tr>
<tr>
<td>&\text{FRAMENAME}</td>
<td>The frame name.</td>
</tr>
<tr>
<td>Variables</td>
<td>Notes</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>(&(INBATCHMODE))</td>
<td>Returns a value of 1 if the software is in batch mode, 0 if interactive.</td>
</tr>
<tr>
<td>(&(ISDATASETAVAILABLE))</td>
<td>Returns a value of 1 if a dataset exists for the current frame, 0 if nonexistent.</td>
</tr>
<tr>
<td>(&(ISOSURFACELEVEL[niso]</td>
<td>The value of the contour variable on the nth iso-surface.</td>
</tr>
<tr>
<td>surfacegrouporactiveoffset])</td>
<td></td>
</tr>
<tr>
<td>(&(LAYOUTFNAME))</td>
<td>The name of the current layout file.</td>
</tr>
<tr>
<td>(&(LOOP))</td>
<td>Innermost loop counter.</td>
</tr>
<tr>
<td>(&(MACROFILEPATH))</td>
<td>Path to the folder containing the most recently opened macro file.</td>
</tr>
<tr>
<td>(&(MAXn))</td>
<td>Maximum value of the n variable, where n is one of: A, R, X, Y, or Z. For 2D or 3D Cartesian plots, the value is calculated from all active zones. For line plots, the value is calculated from the zone assigned to the first active linemap.</td>
</tr>
<tr>
<td>(&(MAXB))</td>
<td>Maximum value of the blanking variable for the first active constraint. For 2D or 3D Cartesian plots, the value is calculated from the active zones. For line plots, the value is calculated from the zone assigned to the first active linemap.</td>
</tr>
<tr>
<td>(&(MAXC))</td>
<td>Maximum value of the contour variable for contour group 1. For 2D or 3D Cartesian plots, the value is calculated from the active zones. For line plots, the value is calculated from the zone assigned to the first active linemap.</td>
</tr>
<tr>
<td>(&(MAXJ), (MAXI), (MAXK))</td>
<td>[I, J, K]-dimension of the first active zone. For finite-element zones, MAXI is the number of nodes, MAXJ is the number of elements, and MAXK is the number of nodes per element (cell-based) or total number of faces (face-based).</td>
</tr>
<tr>
<td>(&(MAXS))</td>
<td>Maximum value of the scatter sizing variable of the active zones.</td>
</tr>
<tr>
<td>(&(MAXU), (MAXV), (MAXW))</td>
<td>Maximum value of the variable assigned to the [X, Y, Z]-vector component of the active zones.</td>
</tr>
<tr>
<td>(&(MAXVAR[nnn]))</td>
<td>Maximum value of variable nnn.</td>
</tr>
<tr>
<td>(&(MINn))</td>
<td>Minimum value of the n variable, where n is one of: A, R, X, Y, or Z. For 2D or 3D Cartesian plots, the value is calculated from all active zones. For line plots, the value is calculated from the zone assigned to the first active linemap.</td>
</tr>
<tr>
<td>(&(MINB))</td>
<td>Minimum value of the blanking variable of the first active blanking constraint. For 2D or 3D Cartesian plots, the value is calculated from all active zones. For line plots, the value is calculated from the zone assigned to the first active linemap.</td>
</tr>
<tr>
<td>(&(MINC))</td>
<td>Minimum value of the contour variable of contour group 1. For 2D or 3D Cartesian plots, the value is calculated from all active zones. For line plots, the value is calculated from the zone assigned to the first active linemap.</td>
</tr>
<tr>
<td>(&(MINS))</td>
<td>Minimum value of the scatter sizing variable for the active zones.</td>
</tr>
<tr>
<td>(&(MINU), (MINV), (MINW))</td>
<td>Minimum value of the variable assigned to the [X, Y, Z]-vector component for the active zones.</td>
</tr>
<tr>
<td>(&(MINVAR[nnn]))</td>
<td>Minimum value of variable nnn.</td>
</tr>
<tr>
<td>(&(NUMFRAMES))</td>
<td>Number of frames.</td>
</tr>
<tr>
<td>(&(NUMPAGES))</td>
<td>Number of pages.</td>
</tr>
<tr>
<td>Variables</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>&NUMPROCESSORS USED</td>
<td>Number of processors used. This may be different than the total number on the machine because of the $\text{SLimits MaxAvailableProcessors}$ configuration file command, or because of a product limitation.</td>
</tr>
<tr>
<td>&NUMVARS</td>
<td>Number of variables in the current dataset.</td>
</tr>
<tr>
<td>&NUMXYMAPS</td>
<td>Number of XY-linemaps assigned to the current frame.</td>
</tr>
<tr>
<td>&NUMZONES</td>
<td>Number of zones in current dataset.</td>
</tr>
<tr>
<td>&OPSYS</td>
<td>Displays the current operating system. 1=Linux/Macintosh, 2=Windows.</td>
</tr>
<tr>
<td>&PAPERHEIGHT</td>
<td>The paper height (in inches).</td>
</tr>
<tr>
<td>&PAPERWIDTH</td>
<td>The paper width (in inches).</td>
</tr>
<tr>
<td>&PLATFORM</td>
<td>The platform type (e.g. LINUX or WINDOWS).</td>
</tr>
<tr>
<td>&PLOTTYPE</td>
<td>Plot type of the current frame: 0 for Sketch, 1 for XY Line, 2 for Cartesian 2D, 3 for Cartesian 3D, and 4 for Polar Line.</td>
</tr>
<tr>
<td>&PRINTFILENAME</td>
<td>The name of the current print file.</td>
</tr>
<tr>
<td>&SLICEPLANE TYPE [slice group or active offset]</td>
<td>The type of the slice plane (X, Y, Z, I, J or K-planes).</td>
</tr>
<tr>
<td>&STARTSLICEPOS [slice group or active offset]</td>
<td>The position of the starting slice plane.</td>
</tr>
<tr>
<td>&STREAMSTARTPOS [slice group or active offset]</td>
<td>Starting position (X, Y, Z) of the nnnth streamtrace.</td>
</tr>
<tr>
<td>&STREAMTYPE [slice group or active offset]</td>
<td>Type (Surface Line, Volume Line, Volume Ribbon, Volume Rod) of the nnnth streamtrace.</td>
</tr>
<tr>
<td>&string</td>
<td>The value of the system environment variable string.</td>
</tr>
<tr>
<td>&TECHOME</td>
<td>Path to the home directory.</td>
</tr>
<tr>
<td>&TECPLOTVERSION</td>
<td>Displays the version number.</td>
</tr>
<tr>
<td>&TIME</td>
<td>The current time, in the format hh:mm:ss.</td>
</tr>
<tr>
<td>&VARNAME [nnn]</td>
<td>The variable name of variable nnn.</td>
</tr>
</tbody>
</table>
The placeholders should be typed exactly as shown, although the index or offset parameters shown must be replaced with the actual index or offset you wish to use.

You can, of course, embed the dynamic text strings in text records in a Tecplot-format data file, as in the following example:

```
TEXT CS=FRAME HU=POINT T="&(DATE)"
```

Environment Variables

System environment variables can be accessed directly from Tecplot 360 EX by using `&($string)`, where `string` is the name of the desired environment variable. Using environment variables within Tecplot 360 EX can add another degree of flexibility by taking advantage of your customized environment. If an environment variable is missing, the environment variable name itself will appear on the screen. Note that all environment variables are treated as text strings.

Formatting Numbers and Strings

If you want a dynamic text string to be formatted in a specific way, you may include C-style formatting strings in the macro variable specification.

The syntax for including a format string is:

```
&(DynamicTextString%formatstring)
```

The `formatstring` should be in the following format. Note that the flags, the width, and the precision are all optional; only the specifier is required. The square brackets `[]` are not a part of the format string.

```
[flags][width][.precision]specifier
```

The following are available as flags:

- `-` - Left-justify (default is right justification)
- `+` - Precede positive numbers with + sign (default is sign only for negative numbers)
- `space` - A blank space will be written in place of the sign if the number is positive
- `0` - Left-pads numbers with zeroes to fill the specified width (rather than spaces)

The `width` specifies the minimum number of characters to be printed. If the dynamic text string is shorter than this length, it is padded with spaces. The string is not truncated if it is longer than this length.

The `precision` specifies the following:

- For character strings: The maximum number of characters to be printed.
- For integers: The minimum number of digits printed; the number will be padded with leading zeroes to fulfill this requirement.
- For floating-point values: the number of digits to be printed after the decimal point.
When no precision is specified, the default is 1. When printing a character string value in a fixed-width field, then, you will want to specify the same value for both the width and the precision to achieve the desired result (otherwise you will print a maximum of 1 character due to the default precision of 1).

The following letters may be used as the specifier:

- **s** - string of characters
- **d** - signed integer
- **e** - scientific notation with a lowercase “e”
- **E** - scientific notation with an uppercase “E”
- **f** - floating point
- **g** - use %e or %f, whichever is shorter
- **G** - use %E or %f, whichever is shorter
- **u** - unsigned integer, written out in decimal format
- **o** - unsigned integer, written out in octal format
- **x** - unsigned integer, written out in hexadecimal (where a - f are lowercase)
- **X** - unsigned integer, written out in hexadecimal (where A - F are uppercase)

Example 1:

To display the message "Maximum contour value is: XXXXXX" where XXXXXX only has two digits to the right of the decimal place. You would use:

```text
"Maximum contour value is: \&(MAXC%.2f)"
```

If `|MAXC|` currently has a value of 356.84206 then the dialog would show:

```text
"Maximum contour value is: 356.84"
```

Example 2:

If, in the above example, you wanted to use exponential format you could use:

```text
"Maximum contour value is: \&(MAXC%12.6e)"
```

Here the result would be:

```text
"Maximum contour value is: 3.568421e+02"
```

Formatting Dates and Times

For dynamic text strings that represent a date and/or time, such as `&(SOLUTIONTIME)`, the following may be used:

- **yy** - Two-digit year ("09")
- **yyyy** - Four-digit year ("2009")
- **m** - Month number ("3", "12"), or minute if preceded by hours token
- **mm** - Zero-padded two-digit month ("09") or minute if preceded by hour token
- **mmm** - Abbreviated month ("Oct" for October)
- **mmmm** - Full month ("October")
- **mmmmm** - Single-letter month ("O")
- **d** - Day of month ("9", "10")
- **dd** - Zero-padded two-digit day of month ("09")
• **ddd** - Abbreviated day of week ("Sun" for Sunday)
• **dddd** - Spelled-out day of week ("Sunday")
• **dddddd** - Single-letter day of week ("S")
• **h** - Hour ("7", "11")
• **hh** - Zero-padded two-digit hour ("07")
• **s** - Seconds ("5", "22")
• **ss** - Zero-padded two-digit seconds ("04")
• **am/pm, a/p** - AM/PM indicator. All times are 24-hour unless an AM/PM indicator is included in the format string, in which case 12-hour formatting is used.
• **\[d\], [h], [m]** - Elapsed days, hours, or minutes.
• **** - Escapes (removes the special meaning of) the following character. May be used if your format string includes static text containing any of the above tokens.

Example:

Here is a date and time format string for a solution time:

"Recorded on &SOLUTIONTIME%dddd dd-mmm-yyyy at hh:mm:ss am/pm"

The result would be similar to:

"Recorded on Monday 14-Sep-2009 at 04:31:42 PM"

18 - 1.6 LaTeX Expressions

LaTeX is a computer language designed for typesetting. The most popular use of LaTeX is math and Greek fonts for technical purposes. Use the LaTeX option of the Text Details dialog (accessed via the LaTeX Box button in the Text Details dialog) to switch between normal and LaTeX text.

The following options are available:

• **Generate LaTeX** - Renders the LaTeX output based on the current text field.
• **Size** - Select a character height unit from the drop-down menu, then enter the size in the associated field. LaTeX size commands are still valid and will resize relative to the Size value:
 • **Points** - Specify character height in points. One point is 1/72nd of an inch.
 • **Frame%** - Specify character height as a percentage of frame height.
 • **Grid** - Specify character height in grid units. (Available only when Position By is set to Grid.)
• **LaTeX** - Switches between regular and LaTeX output in the text field.
• **X/Y Position** - Choose the position of the text element's anchor point (see Anchor button).
Text, Geometries, and Images

• **Position by** - Choose to position the text using the frame or grid coordinate system.
• **Anchor** - Choose how the text is aligned with the anchor point. As new text is added, the text expands away from the anchor point chosen in the Anchor Alignment dialog (See Section 18 - 1.1 "Text Details" for a complete image of the Anchor Alignment dialog).
• **Macro function** - Enter the name of the macro function to be linked to this text object. See Section 18 - 3 "Linking Text and Geometries to Macros" for more information. To run the linked macro function, hold down Control while right-clicking the text object in the workspace. (On Mac OS X, hold down Command while right-clicking.).

LaTeX Setup

A few requirements are needed before LaTeX outputs can be generated. The first is to have a LaTeX engine installed. LaTeX distributions are largely free and available on many different operating systems. For installation recommendations, see the LaTeX Project page.

The second requirement is to have the tecplot_latex.mcr file correctly configured in your installation directory. Each LaTeX engine will come configured with different ways to parse commands. Details of how to configure it can be found in the tecplot_latex.mcr file. The default settings have been tested with MiKTeX and TeXLive engines. If using the default install options for MiKTeX, the zhmetrics package will also need to be installed.

For information on how to load a custom tecplot_latex.mcr file, see Section 30 - 1 "Custom Files loaded on Startup".

LaTeX Examples

Example 1: Mathematical Symbols

LaTeX allows for easy configuration symbol production. The example below shows how to create simple vector and square root symbols:

\$\vec a = \sqrt 2 \$

The dollar signs denote the start of an equation. The output is shown below:

\[\vec a = \sqrt 2 \]

Figure 18-2. Vector a equals square root of 2

Example 2: Mathematical Formula

In LaTeX, syntax is crucial to produce a correct output. Each symbol has its own syntax. The formula for Kirchhoff’s current law, for example, is used like so:

```
Kirchhoff's current law
\begin{equation}
\sum_{k=1}^{n} I_k = 0 \; .
\end{equation}
```

282
Notice in the Figure 18-3 below how the begin and end equations separate the equation from regular text. LaTeX changes paragraph spacing as well as symbols.

\[\sum_{k=1}^{n} I_k = 0. \]

Figure 18-3. Kirchhoff’s Current Law in LaTeX

Example 3: Sizing and Accented Phrase

LaTeX allows for easy alphabetical accents. The following example shows the variety of accented phrases that can be accomplished by LaTeX typesetting. The phrase:

\[
\text{\huge ?Dónde est\'a el avión?} \]

Is easily converted to non-English symbols. In LaTeX, these symbols are converted inline with other text allowing fluid transitions between both.

\text{¿Dónde está el avión?}

Figure 18-4. Multi-lingual phrases in LaTeX

Example 4: Color, Sizing, and Text Boxes

LaTeX allows for easy customizability with certain keywords. Some keywords and formatting are dependent on packages that do not come preinstalled with your LaTeX engine. The following example uses the xcolor package to show custom formatting. To initialize xcolor in the preamble, add the following to the end of the preamble in the \texttt{tecplot_latex.mcr} file:

\usepackage{xcolor}

Now your Tecplot 360 EX installation will be ready to use the xcolor package. Use the following phrases as an example for color, size, and text box formatting:

\begin{verbatim}

\textcolor{red}{\fcolorbox{gray!20}{red}{\color{red} Colors are fun}} but \ldots
\emph{\small sometimes they are not ideal}
\textcolor{blue}{\framebox{This might be better.}}
\textcolor{orange}{\colorbox{orange}{whatever you do}}
\textcolor{black}{don’t make a \textbf{huge Big Deal} about it.}

\end{verbatim}

This example shows three different text boxes each with different parameters. \texttt{colorbox} allows for a colored frame as well as a background. \texttt{framebox} has a transparent background and takes
the frame color of whichever color is currently being used. \colorbox creates a highlight in the color specified. The output is shown below:

Colors are fun, but...

sometimes they are not ideal

This might be better.

But whatever you do,

don’t make a Big Deal about it.

Figure 18-5. LaTeX Color, Sizing, and Text Boxes

For more examples on LaTeX use, syntax, or concepts check Tobias Oetiker’s PDF, The Not So Short Introduction to LaTeX.

Many frequently asked questions can also be found on the TeX StackExchange website: https://tex.stackexchange.com/

18 - 2 Geometries

Geometries in Tecplot 360 EX are simply lines and shapes, including polylines (a set of line segments), circles, ellipses, rectangles, and squares. Images are also considered geometries. Figure 18-6 shows some examples of geometries.

Figure 18-6. Sample Geometries

18 - 2.1 Geometry Creation

Geometries are created by drawing them in a frame using tools from the Toolbar or the Insert menu. (There is no tool for inserting an image; to insert an image, choose Insert>Image/Georeferenced Image).

Polyline

A polyline is a single geometry consisting of one or more line segments. Add a polyline to your plot by using the \(\mathcal{A} \) button from the Toolbar or by selecting Insert>Polyline. To draw the polyline, move the mouse (without dragging) to the desired end point of the first line segment, then click the left mouse.
button. Move the pointer to the next end point, click, and so on. After placing the last segment, double-click on the final end point, right-click, or press Escape on your keyboard. To draw a horizontal or vertical line segment, press the H or V keys, respectively, while drawing the segment. After you place the segment’s end point, the horizontal or vertical restriction is lifted. To lift the horizontal or vertical line segment restriction without placing the end point, press A on your keyboard. You can draw unconnected line segments in a single polyline; press U on your keyboard to “lift the pen.” You can then move the pointer to the start of the next line segment.

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Allow translation of polyline segments in all directions.</td>
</tr>
<tr>
<td>H</td>
<td>Restrict translation of current polyline segment to horizontal.</td>
</tr>
<tr>
<td>U</td>
<td>Pen up, while drawing polyline.</td>
</tr>
<tr>
<td>V</td>
<td>Restrict translation of current polyline segment to vertical.</td>
</tr>
</tbody>
</table>

Table 18 - 3: Keyboard Shortcuts for Polylines

Circle

Add a circle to your plot by using the ☺ button from the Toolbar or by selecting Insert-Circle. To draw the circles, click at the desired center point of the circle; drag the mouse until the circle is the desired radius, then release.

Ellipse

Add an ellipse to your plot by using the ☺ button from the Toolbar or by selecting Insert-Ellipse. To draw the ellipse, click at the desired center point of the ellipse; drag the mouse until the ellipse is the desired size and shape, then release.

Square

Add a square to your plot, using the ☺ button from the Toolbar or by selecting Insert-Square. The anchor point of the square is either the lower left-hand corner or the upper right corner of the square. Drag the mouse to the right of the anchor to create a square with the anchor at lower left; drag the mouse to the left to create a square with the anchor at upper right. Release when the square is the desired size.

Rectangle

Add a rectangle to your plot, using the ☺ button from the Toolbar or by selecting Insert-Rectangle. To draw the rectangle, drag the mouse until the rectangle is the desired size and shape. In contrast to squares, rectangles can propagate in any direction.

Image

Tecplot 360 EX can import images from JPEG, BMP, and PNG files. These images can be used as logos or as a background to your plot. To add an image to your plot, choose Insert-Image/Georeferenced Image and browse to the desired image file. When you insert an image, the image is initially centered in the frame at a preset size. It can be resized by dragging its handles (at the corners and at the midpoints of its edges) when it is selected.

Images cannot be included in data files. When you save a data file, even if you indicate that you wish to include geometries, any images in the plot are not saved.

In layout and style sheet files, the image is referenced from its original location. This reference can be a relative reference or an absolute (as with data files). See "Layout Files, Layout Package Files, Stylesheets" on page 391 for details.
Images are included in layout package files.

Georeferenced Images

Georeferenced images can be added if they are paired with world files. Valid world files include .bmpw, .bpw, .jpgw, .jgw, .pgw, .pngw, .wld. When a world file is selected in the Insert Image File loader, it will automatically look for a corresponding image file of the same name.

World files supply information about the image's coordinate system including the location, scale, and rotation of the image on a defined coordinate system. For more information about how each line in a world file represents the coordinate system, see this [Wikipedia World File article](https://en.wikipedia.org/wiki/World_file).

Georeferenced Image Dialog

Displays information about the georeferenced image and allows the georeferenced image to be moved.

- **File Name** - Displays the path of the original georeferenced image file.
- **Resolution** - Displays the original resolution of the georeferenced image in pixels.
- **Z Position** - Enter the Z-coordinate of the anchor position of the georeferenced image.
- **Z min** - Displays the minimum value of the Z-coordinate.
- **Z max** - Displays the maximum value of the Z-coordinate.
- **Show in all Frames with the Same Data** - Toggle-on this option to display the geometry in all frames sharing the active frame's dataset.

18 - 2.2 Geometry Details

Use the Geometry Details dialog to specify attributes of polylines, circles, ellipses, squares, rectangles, and images. To access the Geometry Details dialog, first choose the Selector tool, then double-click the geometry or image, or right-click it and choose Geometry Details or Image Details from the context menu. From the context menu the line and fill attributes can be changed easier than selecting Geometry Details.

The following options are available for most types of geometries (the line-related options are not, however, available for images):

- **Line Color** - Select a color for the geometry from the Color Chooser.
- **Line Pattern** - Select the desired pattern (Solid, Dashed, Dotted, LongDash, or DashDotDot).
- **Pattern Length (%)** - Specify the length of the line pattern as a percentage of the frame width.
- **Line Thickness (%)** - Specify the thickness of the line as a percentage of the frame width.
- **Fill with Color** - Toggle-on to fill a circle, ellipse, square, rectangle or line segment polygon. Then select a color for the fill using the Color Chooser.
- **Clipping** - Clipping displays only the portion of an object that falls within a specified region of the plot. If you have specified your geometry position in the Frame coordinate system, the geometry will be clipped to the frame: any portion of the geometry that falls outside the frame is not displayed. For this reason, the clipping options are not available for geometries using frame coordinates.

If you have specified the Grid coordinate system, you can choose to clip your geometry to the frame or the viewport. The size of the viewport depends on the plot type as follows:

- **3D Cartesian** - The viewport is the same as the frame, so viewport clipping is the same as frame clipping. This option is therefore unavailable in 3D Cartesian plots.
- **2D Cartesian/XY Line** - The viewport is defined by the extents of the X and Y-axes. You can modify this with the Area page of the Axis Details dialog.
• Polar Line/Sketch - By default, the viewport is the same as the frame. You can modify this with the Area page of the Axis Details dialog.

• Draw Order - Geometries can be drawn either before the data, or after the data. If a geometry is drawn before the data, the plot layers, such as mesh, contour lines, etc. will be drawn on top of the geometry. If a geometry is drawn after the data, the geometry will be drawn last, obscuring the data.

You can place text and geometries in any order you like. Tecplot 360 EX draws all geometries first, in the order in which they were placed, then all text. Use the Send to Back and Bring To Front commands on the Edit menu to reorder objects.

• Attach to Zone/Map - Toggle-on "Attach to Zone/Map" to attach the geometry to a particular zone or mapping by entering the number of the zone or mapping. Geometries that are attached to an inactive or non-existent zone are not displayed.

• Show in all Frames with the Same Data - Toggle-on this option to display the geometry in all frames sharing the active frame’s dataset.

• Macro Function - Specify the name of the macro function to be linked to the geometry. See Section 18 - 3 “Linking Text and Geometries to Macros” for more information. To run the linked macro function, hold down Control while right-clicking the geometry in the workspace. (On Mac OS X, hold down Command while right-clicking.)

• Coordinate System - Specify the coordinate system for the geometry (Frame or Grid). When created, screen objects default to the grid coordinate system. Changing the coordinate system automatically converts position and size fields so that the geometry will remain in the same place at the same size in the current view.
 • Frame - The geometry is always displayed at constant size and position when you zoom in or out of the plot.
 • Grid - The geometry resizes and moves with the data grid. However, the geometry remains fixed when you rotate the plot. Changing the center of rotation may cause the geometry to move.

• X, Y - Enter the X and Y-coordinates of the anchor position of the geometry (in frame units if the coordinate system is frame; in grid units if the coordinate system is grid). This point is the center for a circle, the upper left corner for a rectangle, etc.

The following fields are specific to a single geometry type:

• Polyline - The Arrowhead Style options control the appearance of an arrowhead on the polyline.
 • Attachment - Choose the end or ends of the polyline by selecting the appropriate check boxes.
 • Style - Plain, filled, or hollow.
 • Size(%) - Specify the size of the arrowhead as a percentage of frame height.
 • Angle - Specify the angle the arrowhead makes with the polyline.

• Circle - Controls the radius and precision of approximation of the circle:
 • Radius - Set the radius of the circle (in coordinate system units, Frame or Grid).
 • Number of Sides - Enter the number of polylines used to approximate the circle.

• Ellipse - Controls the shape and precision of approximation of the ellipse:
 • Horizontal Axis - Set the horizontal axis of the ellipse (in coordinate system units, Frame or Grid).
 • Vertical Axis - Set the vertical axis of the ellipse (in coordinate system units Frame or Grid).
• Number of Sides - Enter the number of polylines used to approximate the ellipse.
• Square - Controls the size of the square:
 • Size - Set the size of the square (in coordinate system units, Frame or Grid).
• Rectangle - Controls the size and shape of the rectangle:
 • Width - Set the width of the rectangle (in coordinate system units, Frame or Grid).
 • Height - Set the height of the rectangle (in coordinate system units, Frame or Grid).
• Image - Displays information about the image and allows the resizing method to be set:
 • File Name - Displays the path of the original image file.
 • Resolution - Displays the original resolution of the image in pixels.
• Filter - The Resize filter determines how the image is resized to fit the screen. The following filters are available:
 • Fast (textures) - default: Tecplot 360 EX uses OpenGL textures to resize the image. This is the fastest option (given sufficient graphics space). However, the accuracy of the image may suffer, especially when reducing an image to a size much smaller than it was before.
 • Pixelated - Choose this option when the image is much larger than its original size and you want to see the individual pixels. This option is slower than the Fast (textures) for increasing the size of images.
 • Smooth - There are seven smooth options, all producing slightly different effects. These options are slower than the Fast (textures), but produce better effects for highly reduced images. In general, use the Smooth (Lanczos2) option unless you have specific image processing needs.

The resize filter has no effect on vector-based output, only on the screen and for exported images.

18 - 2.3 Three-dimensional Line Geometries

Three-dimensional line geometries cannot be created interactively; they must be created in a data file or using an add-on. In order to display 3D geometries, you must either include at least one zone in the data file with the 3D geometries or read the 3D geometries in, using the Add to Current Data Set option, after having first read a dataset into the frame.

18 - 3 Linking Text and Geometries to Macros

Each text or geometry you create, or image you insert, can be linked to a macro function. This macro function is called when you hold down the Control key (Command key on Mac OS X) and click the right mouse button on the text or geometry or image. Macro functions are specified with the Macro Function field in the Geometry Details dialog or in the Text Details dialog (accessed by selecting your object and right-clicking).

In order to be attached to a text or geometry object, the macro function must be a “retained” macro function. A macro function is “retained” via either of the following scenarios:
• running a macro file that contains the required macro functions
• including it in your tecplot.mcr file (which is run at startup, making it a special case of the preceding scenario)
In both cases, the macro function is defined using the \$MACROFUNCTION macro command. Refer to "$MACROFUNCTION...$ENDMACROFUNCTION" on page 163 in the Scripting Guide for additional information.
Text, Geometries, and Images
Part 4 Data Manipulation
Blanking

Blanking allows you to exclude specific portions of zones from being plotted (in other words, selectively display certain cells or data points) based on variable values. In 3D, the result is analogous to a cutaway view.

Blanking settings apply only to the active frame, but Value Blanking settings for multiple frames may be synchronized using frame linking. Refer to Section 2 - 3.4 “Frame Linking” for more information on linking. Blanking results for volume zones depend upon the Surfaces to Plot setting on the Surfaces page of the Zone Style dialog (See Section 7 - 1.2 “Surfaces” for more details).

In the following discussions, the term “cell” is used. In I-ordered datasets, a cell is the connection between two adjacent points. In IJ-ordered datasets, a cell is the quadrilateral area bounded by four neighboring data points. In IJK-ordered datasets, a cell is the six-faced (hexahedral) volume bounded by eight neighboring data points. For finite element datasets, a cell is equivalent to an element.

The forms of blanking are as follows:

- **Value Blanking** - Cells (or portions of cells) of selected zones or line plot mappings are excluded based on the value of the value blanking variable at the data point of each cell or at the point where each cell intersects a constraint boundary.
- **IJK Blanking** - Cells of one IJK-ordered zone are included or excluded based on the index values. (IJK-ordered zones only)

All types of blanking may be used in a single plot. They are cumulative: cells blanked from any of the options do not appear. Value Blanking and Depth Blanking affect selected zones of all types, while IJK Blanking affects a single IJK-ordered zone.
Blanking

In general, all types of blanking affect all field layers, zones, and all other plot attributes except for edge layers, with the following exceptions:

<table>
<thead>
<tr>
<th>Type of Blanking</th>
<th>Attribute Not Blanked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value Blanking</td>
<td>Edge Layer</td>
</tr>
<tr>
<td>IJK Blanking</td>
<td>Derived Objects* (slices, streamtraces, or iso-surfaces)</td>
</tr>
<tr>
<td></td>
<td>Finite-element zones</td>
</tr>
<tr>
<td></td>
<td>Unstructured/Unorganized zones</td>
</tr>
</tbody>
</table>

Table 19 - 1: Plot attributes not affected by blanking. (See Section 19 - 6 “Blanking Settings for Derived Objects.”)

19 - 1 Value Blanking

Value blanking allows you to selectively eliminate or trim cells (only) and elements from Line and 3D field plots. For each active constraint, you specify a value blanking variable, a constant value or another variable, and a conditional statement telling Tecplot 360 EX to blank that region in relation to the specified variable or constant.

19 - 2 Value Blanking for Field Plots

To include value blanking in your plot, go to the Plot menu and select Blankings>Value Blanking. The Value Blanking dialog has the following options:

- **Include Value Blanking** - Toggle-on to include value blanking.
 Note that it is possible to edit the settings in the Value Blanking dialog without actually activating blanking. This can make it faster to set up blanking since the plot won’t need to redraw after every change of settings.
- **Blank entire cells when** - Select one of the following blanking styles:
 - **All corners are blanked** - Cells are removed from the plot if all of their data points satisfy one or more of the active blanking constraints.
 - **Any corner is blanked** - Cells are removed from the plot if any of their data points satisfy one or more of the active blanking constraints.
 - **Primary value is blanked** - Cells are removed from the plot based on the primary value for a cell. The primary value for the cell is dependent upon the zone type and the variable value location, as outlined in the following table.

<table>
<thead>
<tr>
<th>Zone Type</th>
<th>Value Location</th>
<th>Source of Primary Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered</td>
<td>Cell Centered</td>
<td>Cell value</td>
</tr>
<tr>
<td>Finite element</td>
<td>Cell Centered</td>
<td>Cell value</td>
</tr>
</tbody>
</table>

294
Value Blanking for Field Plots

Refer to the Zone/Variable Info Page of the Data Set Information dialog to determine the Zone Type and Value Location.

- **Constraint** - You can establish up to eight value blanking constraints. Click a numbered button here to choose the constraint to be added or changed.
- **Active** - Toggle-on to activate the chosen constraint.
- **Blank when** - For each constraint, set the following parameters:
 - Select the variable to use for value blanking.
 - Specify an operation to describe how the blanking variable will be compared to the constant or variable following it.
 - Choose to compare the blanking variable to either another variable or to a constant. If you are comparing to a variable, select the variable; if comparing to a constant, enter the constant.
- **Show Constraint Boundary** - Toggle-on to display a line that separates the region of your data that is blanked from the region which is not blanked. Set the appearance of this line using the following controls:
 - **Color** - Select the color of the boundary in the Color Chooser.
 - **Line Pattern** - Select the line pattern for the boundary.
 - **Pattern length** - Select the length of the pattern as a percentage of frame height.
 - **Line thickness** - Select the width of the boundary line as a percentage of frame height.

It is often convenient to create a new variable for use as the value blanking variable. This allows you to manipulate its values without changing any other part of the plot. You can create a new variable using the Specify Equations dialog (accessed via Data>Alter). See Section 20 - 1.1 "Equation Syntax".

Value Blanking has no effect on edges of an ordered zone. If the edge is turned on, the edge of the entire zone (without value blanking) is plotted.
Blanking

The following figure illustrates the various value blanking modes for plots.

Figure 19-7. The effects of the different value blanking options in field plots for a constraint where a variable is less than or equal to zero. The dark shading indicates the areas that are not blanked. Clockwise from upper left: Blank cell when primary value is blanked. Blank cell when all corners are blanked. Trim cells along mathematical constraint boundary. Blank cell when any corner is blanked.

19 - 3 Value Blanking Settings for Individual Zones

Using the Effects page of the Zone Style dialog (accessed via the Plot menu or the Plot sidebar), you can turn value blanking on and off for individual zones. Simply highlight the zone(s), and toggle the checkbox in the Use Value Blanking column.

19 - 4 Value Blanking for Line Plots

For line plots, value blanking excludes data points from consideration in the resulting plot. The settings are the same as for Value Blanking for Field Plots, except that you cannot choose the behavior of blanking relative to cells, as this does not apply to line plots.

As alternatives or adjuncts to value blanking, you can use the Indices page of the Mapping Style dialog to limit index ranges per mapping. The Curves page can provide another form of blanking by allowing you to limit the range of the independent variable for individual mappings.

Figure 19-8 shows two plots. The original data for the plots contain some “bad” data points. The bad data points were identified as those with a Y-value greater than 0.6. The plot on the left uses all data points, including the bad data points, to draw a curve. The plot on the right has filtered out the bad data points by
IJK Blanking

using value blanking, where all points are removed if $Y > 0.6$. Blanking does not necessarily have to be on the independent or dependent variable.

Figure 19-8. XY Line plots showing the effect of value blanking.

19 - 5 IJK Blanking

IJK Blanking is available for 2D and 3D ordered zones, in the 2D and 3D Cartesian plot types. IJK Blanking removes a selected portion of one IJK-ordered zone from the plot. This allows you to create cutaway plots: plots showing the exterior of some dataset with a section “cut away” to show the interior, such as the plot shown in Figure 19-9.

To use IJK-blanking, you must have a 2D or 3D IJK-ordered zone, and the current plot type must be 2D or 3D Cartesian. Unlike Value Blanking, which operates on all zones within a single frame, IJK Blanking can only be used on a single zone within a frame.
Figure 19-9. A cutaway plot created with IJK Blanking.

To use IJK-blanking, select Blanking:IJK Blanking from the Plot menu. This option is available only when your data set has at least one IJK ordered zone.

The Use IJK Blanking checkbox at the top of this dialog turns IJK blanking on or off. The Definition page has the following options:

- **Use IJK Blanking** - Toggle-on to include IJK Blanking in your plot.
- **Zone** - Select the zone to which to apply IJK Blanking by clicking in the displayed list of IJK ordered zones. You may select only one zone.
If your data set has many zones, it is useful to filter the zone list. Type part of a zone name and press Enter (or click the filter button next to the zone name field) to display only the zones having a name containing the entered text.

- **Domain** - Specify the domain of the IJK Blanking by choosing one of the following options:
 - **Interior** - Cells within the specified index ranges are blanked. Those outside are plotted. This creates a “hole” in the zone. The left side of Figure 19-10 shows an ordered zone with IJK Blanking with Interior domain.
 - **Exterior** - Cells outside the specified index ranges are blanked. Those inside are plotted. Exterior plots a sub-zone of the zone. The right side of Figure 19-10 shows an ordered zone with IJK Blanking with Exterior domain.

![Figure 19-10. IJK Blanking with Interior domain (left) and Exterior domain (right).](image)

- **Select IJK ranges using** - Specify the format in which you will specify the index ranges by selecting one of the following option buttons:
 - **Index Value** - Specify the I, J, and K-index ranges using absolute index values.
 - **Percent of Max** - Specify the I, J, and K-index ranges as start and end percentages of the maximum index. For example, you could blank the middle third of a dataset by setting the start percentage to 33.3 and the end percentage to 66.6.

For information on using the Animation page, see “IJK Blanking Animation” on page 444.

19 - 6 Blanking Settings for Derived Objects

You can opt to turn blanking on or off for derived objects (iso-surfaces, streamtraces, or slices) in their respective Details dialogs.

- **Iso-surfaces** - The option is located on the Style page of the Iso-surface Details dialog (click the Details button to the right of Iso-Surfaces in the Plot sidebar). Refer to Section 16 - 3 “Iso-Surface Contour and Shade” for details.
- **Streamtraces** - The option is located on the Integration page of the Streamtrace Details dialog (click the Details button to the right of Streamtraces in the Plot sidebar). Refer to Section 15 - 1.7 “Integration Page” for details.
- **Slices** - The option is located on the Definition page of the Slice Details dialog. Refer to Section 14 - 1.2 “Definition Page” for details.

When you save a layout, macro, or stylesheet, the IJK blanking index ranges are stored as the percentage of the maximum index regardless of how you chose to enter them. This way, one layout can easily be used for data sets containing zones of various sizes.
Data Operations

Plots in Tecplot 360 EX rely on the datasets attached to each frame. You can modify, create, transform, interpolate, duplicate, and delete the data in the current dataset using the Data menu. You can also use the data operation capabilities of Tecplot 360 EX to create plots of analytical functions. By using layout files, macros, and/or equation files, you can create complex data operations that can be repeated on different datasets.

Changes to the dataset within Tecplot 360 EX do not affect the original data file(s). You can save the modified data by choosing Write Data from the File menu. When you save a layout file, a journal of data operations is saved and those operations are repeated when the layout file is read at a later time. If the data in the file has changed, or the data file is overwritten with new data, the operations are applied to the new data. Alternatively, any datasets that have been modified are also saved to data files (see Section 23 - 1, "Layout Files, Layout Package Files, Stylesheets" for details).

20 - 1 Data Alteration through Equations

Use Data>Alter>Specify Equations (or click the toolbar button) to alter data in existing zones. The dialog allows you to change the values of entire variables or specific data points. You can also use this dialog to create new variables.

Changes made to the dataset in the Specify Equations dialog are not made to the original data file. You can save the changes by saving a layout file or writing the new data to a file. Saving a layout file will keep your data file in its original state, but use journaled commands to reapply the equations.

Variables defined in your data file, or variables you create yourself, are referenced in equations by surrounding them with curly braces, like \{RPM\}. This syntax must be used even when first defining a variable, for example \{RPM\} = \{RPS\} * 60 to define a new RPM variable from an existing RPS variable. Variable and function names provided by Tecplot 360 EX do not require the braces.
Data Operations

The **Specify Equations** dialog has the following options and fields:

- **Equation(s)** - Enter the equation(s) using the syntax described in [Section 20 - 1.1 “Equation Syntax”](#).
- **Data Set Info** - Opens the Data Set Info dialog (see [Section 5 - 4 “Data Set Information”](#)).
- **Save Equations** - Save all equations in the Equation(s) field to a text file with an .eqn format.
- **Load Equations** - Load an equation file previously saved.
- **Zones to Alter** - Select which zones to alter. You can manually select the zones in the list (holding Shift when clicking to create a range, or Control to toggle individual zones on or off). You may use the buttons below the list to select all zones, all active zones, or no zones.

When creating a new variable, if all zones are not selected, Tecplot will create a passive variable as a placeholder for any zones that are not included in the data alteration since all zones in a dataset must have the same number of variables. Passive variables effectively return zero for every point or cell value, do not consume any memory, and can be replaced at any time with other data alterations.

- **Index Ranges** - Select the index ranges to alter in the selected zones. You may skip this step if you want to apply the equation to all points of the selected zones. Use the special value 0 or M to specify the maximum index. You can also use the values M-1 (to specify the index one less than the maximum index), M-2, and so forth.

For Ordered Data, the I-Index, J-Index, and K-index options correspond to the I, J, and K values in the dataset. For finite element data, the I-Index corresponds to the range of nodes and the J-Index corresponds to the cell-centered values. The K-index has no bearing on finite element data.

The Skip field indicates the increment between indexes. 1 means apply the calculation to every data point, 2 means to every other data point, 3 to every third point, and so on. When creating a new variable, the new variable's value is set to zero at any index value that is skipped.

- **New Var Data Type** (if applicable) - Select the data type of the new variable. The following data types are available:
Data Alteration through Equations

- **Auto** - Tecplot 360 EX assigns the data type based upon the variables used in the right-hand side of the equation.
- **Single** - Four-byte floating point values.
- **Double** - Eight-byte floating point values.
- **Long Int** - Four-byte integer values.
- **Short Int** - Two-byte integer values.
- **Byte** - One-byte unsigned integer values (can contain values from zero to 255).
- **Bit** - Either zero or one.
- **New Var Location** (if applicable) - Select the location of the new variable. The options are:
 - **Auto** (default) - "Auto" is set to node unless all variables in the equation are located at the cell center.
 - **Node**
 - **Cell-Center**
- **Compute** - Click the Compute button to alter the data. If an error occurs during the alteration (because of division by zero, overflow, underflow, etc.), an error message is displayed, all of the zones are restored to their previous state as of the beginning of processing that equation, and processing stops. The results of equations that have been successfully processed, however, are retained.

For example, if you enter three equations, and the second contains an error, the final state is the result of processing only the first equation. The second equation is rolled back due to the error, and the third is not processed at all.

Every time you hit the [Compute] button, the equations are calculated. Be sure to remove previously computed equations before computing new ones.

20 - 1.1 Equation Syntax

You can enter multiple equations in the Equation(s) text field of the Specify Equations dialog. Each equation occupies one line of the text field as demarcated by the Enter key (not necessarily by where they wrap in the text field). The equations are applied in order to all specified zones and data points.

Tecplot 360 EX equations have the following form:

```
LValue = F(RValue1, RValue2, RValue3,...)
```

Where:
- **F()** - A mathematical expression.
- **LValue** - An existing or new variable.
- **RValueN** - A value (such as a constant, variable value, or index value).

If `LValue` already exists in the dataset of the active frame, the equation is used to modify that variable. (The same variable may be used on the right side of the equation to refer to the pre-calculation value and thereby modify it based on its original value.) If the variable does not already exist, the equation is used to create a new variable as a function of existing variables.

There may be any number of spaces within the equation. However, there cannot be any spaces between the letters of intrinsic-function names nor in variables referred to by name. (See **Equation Operators and Functions**.)

Equation Variables and Values

A variable is specified in one of the following ways:
Data Operations

- **Its order in the data file** - A variable may be referenced according to its order in the data file, where V1 is the first variable in the data file, V2 is the second, and so forth. To create a new variable using this specification, you must specify the number of the next available variable (i.e. if there are 5 variables in the dataset), the new variable must be called V6. You will receive an error message, if you attempt to assign an invalid variable number.

 You can confirm the number and order of variables in the data file in the **Data Set Information** dialog (choose Data>Data Set Info). The variables in the dataset are listed on the right-hand side of the page.

- **By its name** - To reference a variable by its name, enclose the name with curly braces (“{” and “}”). For example, to set V3 equal to the value of the variable named R/RFR, you can enter:

 V3 = {R/RFR}

 Variable names are not case sensitive. Leading and trailing spaces are also not considered. However, spaces within the variable name are significant. If two or more variables have the same name, the first variable is used when the variable is referred to by name. So, if both V5 and V9 are named R/RFR, V5 is used.

 The curly braces can also be used on the left-hand side of the equation. In this case, if a variable with that name does not exist, a new variable is created with that name for all zones.

- **By a letter code** - Variables and index values may be referenced by the following letter codes:

 - **I** - For I-ordered and finite-element data:

Finite-element	Ordered
Nodal	I is equal to I
	I is equal to the I-index number
Cell-centered	I is equal to the element number
	I is equal to the I-index number

 - **J** - For J-ordered and finite-element:

Finite-element	Ordered
Nodal	J is equal to the node number
	J is equal to the J-index number
Cell-centered	J is equal to 1
	J is equal to the J-index number

 - **K** - For K-ordered and finite-element:

Finite-element	Ordered
Nodal	K is equal to 1
	K is equal to the K-index number
Cell-centered	K is equal to 1
	K is equal to the K-index number

- **X** - The variable assigned to the X-axis. In XY-plots, all active mappings must have the same X-variable in order for this variable name to be valid.

- **Y** - The variable assigned to the Y-axis. In XY-plots, all active mappings must have the same Y-variable in order for this variable name to be valid.
Data Alteration through Equations

- **Z**: The variable assigned to the Z-axis (if in 3D Cartesian).
- **A**: The variable assigned to the Theta-axis for Polar plots. For this variable to be valid, the plot type must be set to Polar Line. In addition, all active mappings must have the same Theta-variable.
- **R**: The variable assigned to the R-axis for Polar plots. The plot type must be Polar Line, and all active mappings must have the same R-variable for this variable name to be valid.
- **U**: The X-component of vectors (if defined).
- **V**: The Y-component of vectors (if defined).
- **W**: The Z-component of vectors (if defined).
- **(B)**: The value-blanking variable for the first active constraint (if applicable).
- **C**: The contour variable for contour group 1 (if defined in the Contour Details dialog).
- **S**: The scatter-sizing variable (if defined in the Scatter Size/Font dialog).
- **SOLUTIONTIME**: The current solution time.

Letter codes may be used anywhere on the right-hand side of the equation. Do not enclose them in curly braces.

Those letter codes representing variables (all letter codes except I, J, and K) may be used on the left-hand side of the equation as well.

The variables referenced by the letter codes are for the current frame.

Equation Operators and Functions

Binary Operators

In an equation, the valid binary operators are as follows:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Addition</td>
</tr>
<tr>
<td>-</td>
<td>Subtraction</td>
</tr>
<tr>
<td>*</td>
<td>Multiplication</td>
</tr>
<tr>
<td>/</td>
<td>Division</td>
</tr>
<tr>
<td>**</td>
<td>Exponentiation</td>
</tr>
</tbody>
</table>

Binary operators have the following precedence:

<table>
<thead>
<tr>
<th>Precedence</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest</td>
<td>**</td>
</tr>
<tr>
<td>*/</td>
<td></td>
</tr>
<tr>
<td>Lowest</td>
<td>+,-</td>
</tr>
</tbody>
</table>

Operators are evaluated from left to right within a precedence level.
Data Operations

Functions

The following functions are available. Arguments may be variables, constants, expressions, other functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIN(X)</td>
<td>Sine of X (must be specified in radians)</td>
</tr>
<tr>
<td>COS(X)</td>
<td>Cosine of X (must be specified in radians)</td>
</tr>
<tr>
<td>TAN(X)</td>
<td>Tangent of X (must be specified in radians)</td>
</tr>
<tr>
<td>ABS(X)</td>
<td>Absolute value of X</td>
</tr>
<tr>
<td>ASIN(X)</td>
<td>Arcsine of X (result given in radians)</td>
</tr>
<tr>
<td>ACOS(X)</td>
<td>Arccosine of X (result given in radians)</td>
</tr>
<tr>
<td>ATAN(X)</td>
<td>Arctangent of X (result given in radians)</td>
</tr>
<tr>
<td>ATAN2(A,B)</td>
<td>Arctangent of A/B (result given in radians)</td>
</tr>
<tr>
<td>SQRT(X)</td>
<td>Returns the positive square root of X</td>
</tr>
<tr>
<td>LOG(X), ALOG(X)ᵃ</td>
<td>Natural logarithm (base e) of X</td>
</tr>
<tr>
<td>LOG10(X), ALOG10(X)ᵇ</td>
<td>Logarithm base 10 of X</td>
</tr>
<tr>
<td>EXP(X)</td>
<td>Exponentiation (base e); EXP(X)=e**X</td>
</tr>
<tr>
<td>MIN(A, B)</td>
<td>Minimum of A or B</td>
</tr>
<tr>
<td>MAX(A, B)</td>
<td>Maximum of A or B</td>
</tr>
<tr>
<td>SIGN(X)</td>
<td>Returns -1 if X is negative, +1 otherwise</td>
</tr>
<tr>
<td>ROUND(X)</td>
<td>Round X to the nearest integer</td>
</tr>
<tr>
<td>TRUNC(X)</td>
<td>Remove fractional part of X</td>
</tr>
<tr>
<td>RAND(N)</td>
<td>Returns random number between 1 and N inclusive, different for each element in the variable</td>
</tr>
</tbody>
</table>

a. LOG and ALOG are equivalent functions
b. LOG10 and ALOG10 are equivalent functions

Conditional Expressions

Conditional expressions may be written using the IF function.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>==</td>
<td>Equal To</td>
<td>A = IF(X==2.0, 3, 4) assigns to variable A: 3 if X equals 2.0, otherwise 4</td>
</tr>
<tr>
<td>!=</td>
<td>Not Equal To</td>
<td>A = IF(X!=Y,Z,2) assigns to variable A: Z if X does not equal Y, otherwise 2</td>
</tr>
</tbody>
</table>

306
Data Alteration through Equations

These operators are valid only within the first argument of an IF function. They may not be used elsewhere in an expression. For example, \(\{A\} = X > 1 \) is invalid. Instead, use \(\{A\} = \text{IF}(X > 1, 1, 0) \) or similar.

Python-style operator chaining (such as \(A < B < C \)) is not supported. Although this construction is syntactically valid, it will not produce the expected result. Use \(A < B \&\& B < C \) instead.

\&\& has a higher precedence than (will be evaluated before) \(||\). When in doubt, use parentheses.

Derivative and Difference Functions

The derivative functions can be called in the same manner as intrinsic functions. Derivative and difference functions can be calculated with respect to the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Restricted to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, y, z</td>
<td>variable assigned to the x-axis, y-axis or z-axis, respectively</td>
<td>XY Line(^n), or 3D</td>
</tr>
<tr>
<td>a</td>
<td>variable assigned to the theta-axis</td>
<td>Polar Line</td>
</tr>
<tr>
<td>r</td>
<td>variable assigned to the radial-axis</td>
<td>Polar Line</td>
</tr>
<tr>
<td>i, j, k</td>
<td>index range</td>
<td>Ordered Zones</td>
</tr>
</tbody>
</table>

Table 20 - 1: Derivative and Difference Function Variables

- If you have multiple x-axes or y-axes in an XY line plot, the variables assigned to the x and y-axis in the first available mapping will be used.

The complete set of first and second-derivative and difference functions are listed below:

<table>
<thead>
<tr>
<th>Type</th>
<th>Function Calls</th>
<th>Applicable Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Order</td>
<td>(ddx, ddy, ddz, dda, ddr)</td>
<td>(x, y, z, a, \text{ or } r)</td>
</tr>
<tr>
<td>Second Order</td>
<td>(d2dx^2, d2dy^2, d2dz^2, d2da^2, d2dr^2)</td>
<td>(x, y, z, a \text{ or } r)</td>
</tr>
<tr>
<td>Second-Order (cross derivatives)</td>
<td>(d2dxy, d2dyz, d2dxz, d2dar)</td>
<td>(xy, yz, xz, \text{ or } ar)</td>
</tr>
</tbody>
</table>

The derivative function \(ddx \) is used to calculate \(\frac{\partial}{\partial x} \); \(d2dx^2 \) calculates \(\frac{\partial^2}{\partial x^2} \).
Data Operations

and \(d_{xy} \) calculates \(\frac{e^2}{xy^2} \).

The difference functions \(d_{di}, d_{dj}, d_{dk} \), and so forth, calculate centered differences of their argument with respect to the indices \(I, J, \) and \(K \) based on the indices of the point. For example:

For ordered zones, spatial derivative functions are calculated using the chain rule with difference functions. For example:

or:

The spatial derivatives of indices, such as \(d_{di}(i) \), are calculated from their inverses, such as \(d_{ji}(x) \), using standard curvilinear coordinate transformations.

For finite-element zones, spatial derivatives are calculated using the Moving Least-Squares technique. The variable at a particular node or cell center is assumed to vary quadratically in space about that point, and least-squares is used with all nodes surrounding the point to fit a polynomial function, whose coefficients then become the first and second derivatives of the variable.

Boundary Values

Boundary values for first-derivative and difference functions (\(d_{dx}, d_{dy}, d_{dz}, d_{di}, \) and \(d_{dk} \)) of ordered zones are evaluated in one of two methods: simple (default) or complex\(^1\).

For simple boundary conditions, the boundary derivative is determined by the one-sided first derivative at the boundary. This is the same as assuming that the first derivative is constant across the boundary (i.e., the second derivative is equal to zero).

For complex boundary conditions, the boundary derivative is extrapolated linearly from the derivatives at neighboring interior points. This is the same as assuming that the second derivative is constant across the boundary (i.e. the first derivative varies linearly across the boundary).

For second-derivatives and differences (\(d_{dij}, d_{djk}, d_{dik}, d_{dxy}, d_{dyz}, d_{dxz}, d_{dij}, d_{djk}, d_{dik}, \) and \(d_{dij}, d_{djk}, \) and \(d_{dik} \)), these boundary conditions are ignored. The boundary derivative is set equal to the

<table>
<thead>
<tr>
<th>Type</th>
<th>Function Calls</th>
<th>Applicable Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Order</td>
<td>(d_{di}, d_{dj}, d_{dk})</td>
<td>(i, j,) or (k)</td>
</tr>
<tr>
<td>Second Order</td>
<td>(d_{dij}, d_{djk}, d_{dik})</td>
<td>(i, j,) or (k)</td>
</tr>
<tr>
<td>Second Order (cross derivatives)</td>
<td>(d_{dij}, d_{djk}, d_{dik})</td>
<td>(i, j,) or (i, k)</td>
</tr>
</tbody>
</table>

Table 20 - Difference Functions

The difference functions \(d_{di}, d_{dij}, \) and so forth, calculate centered differences of their argument with respect to the indices \(I, J, \) and \(K \) based on the indices of the point. For example:

\[
\frac{dd_{i}(V)}{dx} = \frac{V_{i+1} - V_{i-1}}{2}
\]

For ordered zones, spatial derivative functions are calculated using the chain rule with difference functions. For example:

or:

\[
d_{dx}(\phi) = d_{di}(\phi) \cdot d_{dx}(i) + d_{dj}(\phi) \cdot d_{dx}(j) + d_{dk}(\phi) \cdot d_{dx}(k)
\]

The spatial derivatives of indices, such as \(d_{dx}(i) \), are calculated from their inverses, such as \(d_{dx}(x) \), using standard curvilinear coordinate transformations.

For finite-element zones, spatial derivatives are calculated using the Moving Least-Squares technique. The variable at a particular node or cell center is assumed to vary quadratically in space about that point, and least-squares is used with all nodes surrounding the point to fit a polynomial function, whose coefficients then become the first and second derivatives of the variable.

Boundary Values

Boundary values for first-derivative and difference functions (\(d_{dx}, d_{dy}, d_{dz}, d_{di}, \) and \(d_{dk} \)) of ordered zones are evaluated in one of two methods: simple (default) or complex\(^1\).

For simple boundary conditions, the boundary derivative is determined by the one-sided first derivative at the boundary. This is the same as assuming that the first derivative is constant across the boundary (i.e., the second derivative is equal to zero).

For complex boundary conditions, the boundary derivative is extrapolated linearly from the derivatives at neighboring interior points. This is the same as assuming that the second derivative is constant across the boundary (i.e. the first derivative varies linearly across the boundary).

For second-derivatives and differences (\(d_{dij}, d_{djk}, d_{dik}, d_{dxy}, d_{dyz}, d_{dxz}, d_{dij}, d_{djk}, d_{dik}, \) and \(d_{dij}, d_{djk}, \) and \(d_{dik} \)), these boundary conditions are ignored. The boundary derivative is set equal to the

1. The \$\$INTERFACE\$\$ parameter in the configuration file \$\$tecplot.cfg\$\$ selects the method to use:

 \$\$INTERFACE DATA (DERIVATIVEBOUNDARY=SIMPLE)\$

 Change the parameter SIMPLE to COMPLEX to use the complex boundary condition.

308
derivative that is one index in from the boundary. This is the same as assuming that the second derivative is constant across the boundary.

You can create your own derivative boundary conditions by using the index range and the indices options discussed previously.

The use of derivative and difference functions is restricted as follows:

- Derivatives and differences for IJK-ordered zones are calculated for the full 3D volume. The IJK-mode for such zones is not considered.
- If the derivative cannot be defined at every data point in all the selected zones, the operation is not performed for any data point.
- Derivative functions are calculated using the active frame’s axis assignments. Be careful if you have multiple frames with different variable assignments for the same dataset.
- Derivatives at the boundary of two zones may differ since Tecplot 360 EX operates on only one zone at a time while generating derivatives.

20 - 1.2 Integration
Use the Analyze menu to calculate integrals with Tecplot 360 EX. See Section 21 - 7 “Performing Integrations” for information.

20 - 1.3 Auxiliary Data
You may use auxiliary data containing numerical constants in equations. The syntax for using auxiliary data in equations is:

\[
\text{AUXZONE}[\text{nnz}]:\text{Name} \\
\text{AUXDATASET}:\text{Name} \\
\text{AUXFRAME}:\text{Name} \\
\text{AUXVAR}[\text{nnv}]:\text{Name} \\
\text{AUXLINEMAP}[\text{nnm}]:\text{Name}
\]

where

- \text{nnz} = the zone number(s)
- \text{nnv} = the variable number(s)
- \text{nnm} = the line map number(s)
- \text{Name} = name of the auxiliary data

For example, a dataset auxiliary data constant called \text{Pref} would be referenced using \text{AUXDATASET}:\text{Pref}.

Equations using this auxiliary data might appear as:

\[
\{P\} = \{P_{\text{NonDim}}\} \times \text{AUXDATASET}:\text{Pref}
\]

20 - 1.4 Zone Number Specification
By following a variable reference with square brackets (“[” and “]”), you can specify a specific zone from which to get the variable value.
Data Operations

The zone number must be a positive integer constant less than or equal to the number of zones. The zone specified must have the same structure (I, IJ, or IJK-ordered or finite element) and dimensions (\(IMAX \), number of nodes) as the zone(s) the equation(s) will be applied to.

If you do not specify a zone, the zone modified by the left-hand side of the equation is used.

Zone specification works only on the right-hand side of the equation.

20 - 1.5 Index Specification

By following a variable reference with parentheses, you can specify indices for ordered data only. Indices can be absolute or an offset from the current index.

Index offsets are specified by using the appropriate index “I”, “J” or “K” followed by a “+” or “-” and then an integer constant. Any integer offsets may be used. If the offset moves beyond the end of the zone, the boundary value is used. For example, \(V3(I+2) \) uses the value \(V3(IMAX) \) when \(I=IMAX-1 \) and \(I=IMAX \). \(V3(I-2) \) uses the value of \(V3(1) \) when \(I=1 \) or \(I=2 \).

Absolute indices are specified by using a positive integer constant only. For example, \(V3(2) \) references \(V3 \) at index 2, regardless of the current index.

If the indices are not specified, the current index values are used.

20 - 1.6 Variable Sharing Between Zones

For zones with the same structure and index ranges, you can set a variable to be shared by specifying that the variable for those zones have the values from one zone. For example, if zones 3 and 4 have the same structure and you compute \(V3=V3[3] \) for zones 3 and 4, \(V3 \) will be shared.

Subsequent alteration of the variables may result in loss of sharing.

20 - 1.7 Equation Restriction

The zone and index restrictions specified in the Specify Equations dialog can be overridden on an equation by equation basis. To specify restrictions for a single equation add the colon character (:) at the end of the equation followed by one or more of the following:

<table>
<thead>
<tr>
<th>Equation Restrictor</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<Z=<set>)</td>
<td>Restrict the zones.</td>
</tr>
<tr>
<td>(<I=start[,end[,skip]]>)</td>
<td>Restrict the I-range.</td>
</tr>
<tr>
<td>(<J=start[,end[,skip]]>)</td>
<td>Restrict the J-range.</td>
</tr>
<tr>
<td>(<K=start[,end[,skip]]>)</td>
<td>Restrict the K-range.</td>
</tr>
<tr>
<td>(<D=datatype>)</td>
<td>Set the data type for the variable on the left hand side. This only applies if a new variable is being created.</td>
</tr>
<tr>
<td>(<V=valuelocation>)</td>
<td>Set the value location (NODAL or CELLCENTERED) for the variable on the left hand side. Only applicable if a new variable is being created.</td>
</tr>
</tbody>
</table>

For example, to add one to X in zones 1, 3, 4, and 5:
Data Alteration through Equations

\[X = X + 1; \{Z = [1,3-5]\} \]

The following example adds one to \(X \) for every other \(I \)-index. Note that zero represents the maximum index.

\[X = X + 1; \{I = 1,0,2\} \]

The next example creates a new variable of type Byte:

\[(\text{NewV}) = X \cdot Y; \{D = \text{Byte}\}\]

20 - 1.8 Macros and Equations

Tecplot 360 EX allows you to put your equations in macros. A macro with just equations in it may be referred to as an equation file, and in fact equation files saved using the Save Equations button are macro files with an .eqn extension. An equation in a macro file is specified using the $!ALTERDATA macro command. Equation files may also include comment lines and must start with the comment #!MC 1410, like other macro files. If you are performing complex operations on your data, and/or the operations are repeated frequently, equation files can be very helpful.

You can create equation files from scratch using an ASCII text editor, or you can create your equations interactively by using the Specify Equations dialog and then save the resulting equations. The standard file name extension for equation files is .eqn.

For example, you might define an equation to compute the magnitude of a 3D vector. In the Specify Equations dialog, it would have the following form:

\[{\text{Mag}} = \sqrt{U \cdot U + V \cdot V + W \cdot W}\]

In a macro file, it would have the following form:

#!MC 1410
$!ALTERDATA EQUATION = "\{\text{Mag} = \sqrt{U \cdot U + V \cdot V + W \cdot W}\}"

The interactive form of the equation must be enclosed in double quotes and supplied as a value to the EQUATION parameter of the $!ALTERDATA macro command.

To read an equation file, select Load Equations on the Specify Equations dialog. In the Load Equation File dialog, select an equation file that contains a set of equations to apply to the selected zones of your data. The equations in the equation file will be added to the list of equations in the dialog. All equations are applied to your data when you click Compute.

Equations in equation files may be calculated somewhat differently depending on whether the computation is done from within the Specify Equations dialog or by running the equation file as a macro. When loaded into the Specify Equations dialog, equations that do not contain zone or index restrictions use the current zone and index restrictions shown in the dialog. When processed as a macro file, the equations apply to all zones and data points. To include zone and index restrictions, you must include them in the equation file as part of the $!ALTERDATA macro command.

Refer to the Scripting Guide for more information on working with the $!ALTERDATA command.

20 - 1.9 Equation Examples

In the following equation, \(V1 \) (the first variable defined in the data file) is replaced by two and a half times the existing value of \(V1 \):

\[V1 = 2.5 \times V1 \]

The following equation sets the value of a variable called Density to 205. A new variable is created if a variable called Density does not exist.

\[(\text{Density}) = 205 \]
Data Operations

In the next equation, the values for \(Y \) (the variable assigned to the Y-axis) are replaced by the negative of the square of the values of \(X \) (the variable assigned to the X-axis):

\[
Y = -X^2
\]

The following equation replaces the values of \(V3 \) with the values of \(V2 \) rounded off to the nearest integer. A new variable is created if there are only two variables currently in the data set.

\[
V3 = \text{round}(V2)
\]

In the following equation, the values of the fourth variable in the data set are replaced by the log (base 10) of the values of the third variable.

\[
V4 = \text{ALOG10}(V3)
\]

Suppose that the third and fourth variables are the X and Y-components of velocity and that there are currently a total of five variables. The following examples create a new variable (\(V6 \)) that is the magnitude of the components of velocity.

\[
V6 = \sqrt{V3^2 + V4^2}
\]

or

\[
V6 = (V3^2 + V4^2)^{0.5}
\]

You can also accomplish the above operation with the following equation (assuming you have already defined the vector components for the active frame):

\[
\text{Mag} = \sqrt{U^2 + V^2}
\]

The following equation sets the value of a variable named \(\text{diff} \) to the truncated value of a variable named \(\text{depth} \) subtracted from the existing value of \(\text{depth} \):

\[
\text{diff} = \text{depth} - \text{trunc}((\text{depth}))
\]

In the next equation, \(C \) (the contour variable) is set to the absolute value of \(S \) (the scatter-sizing variable), assuming both \(C \) and \(S \) are defined:

\[
C = \text{abs}(S)
\]

In the following example, a new variable is created (assuming that only seven variables initially existed in the data file). The value for \(\text{V8} \) (the new variable) is calculated from a function of the existing variables:

\[
\text{V8} = \sqrt{\text{V1}^2 + \text{V2}^2 + \text{V3}^2} / 287.0\times\text{V4}\times\text{V6}
\]

The above operation could have been performed in two simpler steps as follows:

\[
\text{V8} = \text{V1}^2 + \text{V2}^2 + \text{V3}^2
\]

\[
\text{V8} = \sqrt{\text{V8} / (287.0\times\text{V4}\times\text{V6})}
\]

The following equation replaces any value of a variable called \(\text{TIME} \) that is below 5.0 with 5.0. In other words, the values of \(\text{TIME} \) are replaced with the maximum of the current value of \(\text{TIME} \) and 5.0:

\[
\text{TIME} = \max((\text{TIME}), 5)
\]

The following equation creates variable \(V4 \) which has values of \(X \) at points where \(X<0 \); at other points, it has a value of zero (this does not affect any values of \(X \)):

\[
V4 = \text{min}(X, 0)
\]

Another example using intrinsic functions is shown below:

\[
V8 = 55.0\times\text{SIN}(V3*3.14/180.0) + \text{ALOG}(V4*3/(V1+1.0))
\]

You can also reference the I, J, and K-indices in an equation. For example, if you wanted to cut out a section of a zone using value blanking, you could create a new variable that is a function of the I and J-indices (for IJ-ordered data). Then, by using value-blanking, you could remove certain cells where the value of the value-blanking variable was less than or equal to the value blanking cut-off value.

Here is an example for calculating a value-blanking variable that is zero in a block of cells from \(I=10 \) to 30, and is equal to one in the other cells:

\[
V4 = \text{IFN}(X, 0, 1)
\]
Data Smoothing

\[V3 = \min((\max(I,30)-\min(I,10)-20),1) \]

The following equation replaces all values of \(Y \) with the difference between the current value of \(Y \) and the value of \(Y \) in zone 1. (If zone 1 is used for the data alteration, the new values of \(Y \) will be zero throughout that zone.)

\[Y = Y - Y[1] \]

The following equation replaces the values of \(V3 \) (in an \(IJ \)-ordered zone) with the average of the values of \(V3 \) at the four adjacent data points:

\[V3 = \frac{(V3(i+1,j)+V3(i-1,j)+V3(i,j+1)+V3(i,j-1))}{4} \]

The following equation sets the values of a variable called \(TEMP \) to the product of the values of a variable called \(T \) measured in four places: in zone 1 at two index values before the current data point, in the current zone at an absolute index of three, in zone 4 at the current data point, and in the current zone at the current data point.

\[(\text{TEMP}) = (T[1](i-2) \times T(3) \times T[4] \times T) \]

Indices may be combined with zone specifications. The zone is listed first, then the index offset. For example:

\[V3 = V3 - V3[1](i+1) \]

\[Y = Y[1] - Y[2](1) + Y(1,j+3) + Y \]

Referencing variables by letter code:

\[V3 = I + J \]
\[V4 = \cos(X) \times \cos(Y) \times \cos(Z) \]
\[\text{(Dist)} = \sqrt{U^2 + V^2 + W^2} \]
\[\text{(temp)} = \min(B,1) \]

Specifying the Zone number for a given variable:

\[V3 = V3 - V3[1] \]
\[X = (x[1] + x[2] + x[3]) \div 3 \]
\[\text{(TempAdj)} = (\text{Temp})[7] - (\text{Adj}) \]
\[V8 = V[19] - 2*C[21] + \frac{\text{R/T}[18]}{2} \]

20 - 2 Data Smoothing

You can smooth the values of a variable of any zone (2D or 3D) or 1D line map (plotted in either XY or Polar) to reduce “noise” and lessen discontinuities in data.

Smoothing can be used after inverse-distance interpolation to reduce the artificial peaks and plateaus this type of interpolation can produce. Each pass of smoothing shifts the value of a variable at a data point towards an average of the values at its neighboring data points.

Zones must be mesh-based to be smoothed. If your data consists of disconnected points, see "Inverse-Distance Interpolation" on page 326 and "Irregular Data Point Triangulation" on page 330 for possible approaches to converting it to a form suitable for use with the Tecplot 360 EX smoothing feature.
Data Operations

To smooth data in Tecplot 360 EX, select **Alter>Smooth** from the **Data** menu.

The **Smooth** dialog has the following options:

- **Zone** - Specify the zone to smooth from the **Zone** drop-down. The zone should not intersect itself. For a given plot type, the dimension of the zone must be less than or equal to the dimension of the plot type. That is, in 3D Cartesian plots, volume, surface and line zones may be smoothed, while in 2D Cartesian plots, volume zones cannot be smoothed.
- **Variable** - Select the variable to smooth. For line plots, the variable must be a dependent variable for an active mapping for that zone.
- **Number of Passes** - Specify the number of smoothing passes to perform. The default is 1. A greater number of passes results in greater smoothing, but takes more time.
- **Coefficient** - Specify the relaxation factor for each pass of smoothing. Enter a number between zero and one (exclusively). Large numbers flatten peaks and noise quickly. Small numbers smooth less each pass, rounding out peaks and valleys rather than eliminating them.
- **Boundary** - Select the boundary conditions by which to smooth from the **Boundary** drop-down.
 - **Fixed** - The points at the boundary are not changed in value. For finite element data, only fixed boundary conditions may be used.
 - **First Order** - The points at the boundary are smoothed based on the assumption that the first derivative normal to the boundary is constant. This will tend to cause contour lines of the smoothed variable to be perpendicular to the boundary.
 - **Second Order** - The points at the boundary are smoothed based on the assumption that the second derivative normal to the boundary is constant. This option may overextrapolate derivatives at the boundary.

- **Smooth** - Click to perform smoothing. While the smoothing is underway, the progress is displayed in the status bar. A Stop button displayed in the status bar allows you to interrupt the operation.

20 - 2.1 Limitations of Smoothing

- Finite element zones cannot be smoothed with anything other than Fixed boundary conditions.
- Tecplot 360 EX uses the active frame’s axis assignments to determine the variables to use for the coordinates in the smoothing, and also to determine whether the smoothing should be done with XY Line, Polar, and 2D or 3D Cartesian plot types. Be sure to select the correct frame if you have multiple frames with different variable assignments for the same dataset.
- Any axis scaling is ignored while smoothing.
Fourier Transform

• For I-ordered or finite element line segment zones, the active frame can be in the XY Line, or 3D Cartesian plot types. In XY Line, the variable must be the dependent variable of one active mapping for that zone.
• For IJ-ordered, finite element triangle, or finite element quadrilateral zones, the active frame can be a 2D or 3D Cartesian plot type, but you cannot smooth the variables assigned to the X and Y-axes in Cartesian.
• For IJK-ordered, finite element tetrahedral, or finite element brick zones, the plot type must be 3D Cartesian, and you cannot smooth the variables assigned to the X, Y, and Z-axes. The IJK-mode is ignored. The zone is smoothed with respect to the entire 3D volume.
• Smoothing does not extend across zone boundaries. If you use a boundary condition option other than Fixed (such that values along the zone boundary change), contour lines can be discontinuous at the zone boundaries.
• Smoothing is performed on all nodes of a zone, and disregards value blanking.

20 - 3 Fourier Transform

The Fourier transform feature (Data>Fourier Transform) allows you to transform one-dimensional ordered linear data into the frequency domain. One or more dependent variables in the data set are taken to be a representation of some function of a single independent variable, such as time, and this function is decomposed into its constituent sine waves. Variables are added to the data set to indicate these waves’ frequency in Hertz, phase, and amplitude in each selected zone, and an XY of the resulting amplitudes is created in a new frame.

The dependent variables for a Fourier transform must be single-valued. The independent variable domain need not be constantly spaced; data will be resampled linearly if necessary.

The resulting frequency, amplitude, and phase variables (three for each dependent variable) are stored in Fourier transform result zones, one for each source zone. The result zones are given the name “Fourier Transform” followed by text indicating the source zone, independent variable, and window function used to calculate them. Result zones are assigned new time strands using the same groupings as the source zones if they belong to time stands; otherwise the resulting zones are static.

The result variables in the result zone are given the names Frequency, Amplitude and Phase followed by text indicating the dependent variable involved in the calculation. If the independent variable is non-uniform, Frequency is a uniform interpolation of the original data.

Newly-created zones are assigned passive variables for all variables that previously existed in the dataset, and all previously-existing zones are assigned passive variables for all new variables created by the Fourier transform.
Data Operations

- **Independent Variable** - The variable used as the frequency domain. If this variable's spacing is non-uniform, this variable is used in conjunction with each dependent variable for interpolation to create a uniform frequency for the Fourier transform.

- **Dependent Variables** - Choose the dependent variables to be transformed. Each will appear on the resulting XY plot as its own linemap.

- **Source Zones** - Choose the zones for which the transform should be calculated.

- **Window Function** - A function applied to the dependent variables before performing the transform (but after interpolation) to taper the data. Rectangular, triangular, Hann, and Hamming filters are provided.

- **Plot Placement** - Where to initially place the result plot of the transform showing the distribution of frequencies in the data. The plot can be moved and resized as desired afterward.
 - **In corner of source frame** - A new frame is created for the frequency plot in the upper right corner of the frame containing the data being transformed.
 - **Tile with existing frames** - All frames, including the new one, are adjusted to the same size and arranged on the paper in a grid.

- **Include Conjugates** - For purely real numbers, fully half of the results of the Fourier transform are conjugates (values with the same real part but opposite imaginary parts, which behave identically in situations where a real number is required). Toggling-off this option will allow the transform to be performed approximately twice as fast, as only one conjugate is calculated.

- **Obey Source Zone Blanking** - If value blanking is active and this option is toggled-on, value blanking is applied to the values of both independent and dependent variables before interpolation is performed. If data values eliminated by blanking cause the data to be non-uniform, the values are interpolated appropriately. All blanked data values up to the first non-blanked value, and all blanked data values after the last non-blanked value, are ignored, providing a way to constrain the domain of the transform.

- **Replace Zones/Variables by Name** - If either or both are toggled-on, the results of the transform are stored in existing result zones and/or variables, based on their names, if such zones and/or variables exist. Otherwise, new result zones and/or variables are created.

You may also access this feature by right-clicking a line map and choosing Fourier Transform from the context menu. In this case, the line map you click defines the independent and dependent variable used. All other settings are taken from last values entered in the dialog; the dialog does not appear.
20 - 4 Axial Rotation

The Axial Rotation dialog, available from the Alter submenu of the Data menu, allows you to rotate one or more 2D or 3D zones using the right-hand rule. The variables rotated are the spatial variables (X, Y, and, for 3D zones, Z) and the vector variables assigned using Plot > Vector > Variables. For 3D zones, you may also choose the axis of rotation.

![Axial Rotation dialog](image)

The Axial Rotation dialog has the following options:

- **Rotation Angle** - The angle by which the data should be rotated. May be specified in degrees or radians using the drop-down menu to the right of the entry field.
- **Axis** - For 3D zones, choose the axis around which rotation should occur. Not available for 2D zones, which are always rotated about a notional axis perpendicular to the zone.
- **Origin** - For rotation around a point other than (0, 0) or (0, 0, 0), enter the location of the origin using the X, Y, and (for 3D zones) Z fields.
- **Zones to Rotate** - Click, Control-click, and/or Shift-click in the zone list to select one or more zones.
- **Select by Time Strand** - For transient data, if this checkbox is toggled on, the zones in the Zones to Rotate list are grouped by time strand, so that selecting a zone selects all the zones in that time strand.

Using a macro, it is possible to rotate around arbitrary axes rather than just X, Y, and Z, and to specify exactly which variables, if any, should be rotated as spatial variables and which as vector variables, including no spatial variables at all, or multiple vector variables. See $!ROTATEDATA in the Scripting Guide.

20 - 5 Zone Creation

The Create Zone submenu of the Data menu allows you to add data to your plot. The menu has the following options:

- Rectangular Zone Creation
- Circular or Cylindrical Zone Creation
- Zone Duplication
Data Operations

• Mirror Zone Creation

20 - 5.1 Rectangular Zone Creation

Creating a rectangular zone is often the first step in interpolating irregular data into an ordered grid. Tecplot 360 EX allows you to create a new ordered rectangular zone with the dimensions in the I, J, and K-directions you specify. This is done either with the Create Rectangular Zone tool (only) or the Create Rectangular Zone dialog. The zone that you create has the same number of variables as other zones in the dataset.

To create a rectangular zone, select Create Zone>Rectangular from the Data menu.

The Create Rectangular Zone dialog has the following options:

• Dimensions - Enter the number of data points in the I, J, and K-directions.
 • To create an I-ordered zone, enter 1 for both the J and K-dimensions.
 • To create an IJ-ordered zone, enter 1 for the K-dimension. The z-axis variable will equal ZMin throughout the created zone.
 • To create an IJK-ordered zone, enter a K-dimension greater than one.

• Coordinates - Enter the start and end points of the physical coordinates (X, Y, and Z).

• Create - Select the [Create] button to create the zone.

Tecplot 360 EX uniformly distributes the data points in the I, J, and K directions. Any variable not assigned to an axis is set to zero.

By using the Specify Equations dialog under the Data>Alter menu, you can modify the X, Y, and Z-coordinates, and the values of the other variables as well, by using equations or Equation files. See Section 20 - 1 “Data Alteration through Equations”.

20 - 5.2 Circular or Cylindrical Zone Creation

Tecplot 360 EX allows you to create a new ordered circular or cylindrical zone with the dimensions in the I, J, and K-directions you specify. The I-dimension determines the number of points on each radius of the zones. The J-dimension determines the number of points around the circumference. The K-dimension determines the number of layers in the zone, creating a cylinder.

You create a circular or cylindrical zone with the Create Circular Zone dialog (accessed via Data>Create Zone), or with the Create Circular Zone tool (only). The zone that you create has the same number of variables as other zones in the dataset.

If you have no current dataset, Tecplot 360 EX creates one with two or three variables, depending on the K-dimension. If you specify K=1, the dataset is created as IJ-ordered, and has two variables. If you specify K>1, the dataset is created as IJK-ordered, and has three variables.
To create a circular zone select Create Zone>Circular from the Data menu.

The Create Circular Zone dialog has the following options:

- **Dimensions** - Enter the dimensions of your circular zone:
 - Radial (I) - Specify the number of points the radial direction (I)
 - Circumferential (J) - Specify the number of points in the circumferential direction (J)
 - Top to Bottom (K) - Specify the number of points for the height of the cylinder (K). Set K equal to one to create a circular zone.

- **Coordinates** -
 - Radius - Enter the length of the radius.
 - X-Origin and Y-Origin - Enter the coordinates for the zone center
 - ZMin and ZMax - Enter the minimum and maximum Z-coordinates. For a circular zone (where K=1), the Z variable is set to ZMin for all points.

- **Create** - Select the [Create] button to create the zone.

For IJ-ordered, Tecplot 360 EX creates a zone in which I-circles are connected by J-radial lines. For 3D (K>1), Tecplot 360 EX creates a K-layered cylindrical zone having I-circles connected by J-radial planes. All other variables are set to zero. These two scenarios are shown below.

Using the Alter option from the Data menu, you can modify the X-, Y-, and Z-coordinates, and the values of the other variables as well, by using equations or equation files. See Section 20 - 1 “Data Alteration through Equations”.

319
20 - 5.3 Zone Duplication

To create a full duplicate of one or more existing zones, select Create Zone>Duplicate from the Data menu. In the Create Duplicate Zone dialog, select the source zone(s). Each duplicate zone has the same name as its source zone.

After a zone is duplicated, all variables in the newly created zone(s) will be shared with their corresponding source zone(s).

20 - 5.4 Mirror Zone Creation

To create a duplicate zone that is the mirror image of an existing zone, select Create Zone>Mirror from the Data menu.

You can only create mirrored zones along one of the standard axes (2D) or the plane determined by any two axes (3D).

The Create Mirror Zone dialog has the following options:

- **Source Zone(s)** - Select the Sources Zone(s).
- **Mirror Axis** - Specify the axis () or axis plane (3D) to mirror about.
- **Create** - Select the [Create] button to create the zone.
Each mirror zone has a name of the form “Mirror of zone sourcezone”, where sourcezone is the number of the zone from which the mirrored zone was created.

The variables in the newly created zone(s) are shared with their corresponding source zone(s), except for the coordinate and velocity normal to the symmetry plane.

20 - 5.5 Axial Duplication

The Axial Duplication dialog, available from the Create Zone submenu of the Data menu, allows you to create successively-rotated duplicates of one or more 2D or 3D zones using the right-hand rule. For example, if your data set contains a simulation of one blade of a turbine, and there are thirty blades in the full turbine, you can create 29 duplicates, each rotated twelve degrees from the previous, to be able to visualize the entire turbine.

The variables rotated are the spatial variables (X, Y, and, for 3D zones, Z) and the vector variables assigned using Plot > Vector > Variables. For 3D zones, you may also choose the axis of rotation. Streamtraces are not duplicated; place streamtraces after zone duplication.

The Axial Duplication dialog has the following options:

• Define Angle Between Instances - Contains two interdependent fields, Angle and Segments, which are used to specify how many duplicates are in a full 360° rotation of the zone.

The number of segments is determined by dividing the angle into 360° and the angle is calculated by dividing the number of segments into 360°. Editing one automatically updates the other. You may choose to specify (or calculate) the angle in either degrees or radians.
Data Operations

- **Offset Angle** - The additional amount by which the first duplicate should be rotated; may be specified in degrees or radians. For example, if you specify an angle between instances of 20° and an offset of 40°, the first duplicate will be made at 60°, the second at 80°, the third at 100°, and so on.

 This field may be used, for instance, when you have already created some duplicates and want to create additional duplicates that do not overlap the ones you have already created. In the example just given of angle 20° and offset 40°, perhaps you have already created two duplicates (at 20° and 40°) and wish to create additional duplicates. In this case, offset of 40° specifies that the last existing duplicate is at 40° and that new duplicates should be created in the next “slot” beyond that, at 60°.

- **Full or Partial Duplication** - Choose to create as many new zones as are necessary for a full rotation by choosing Full 360° (this will result in the number of duplicates entered or calculated in the Define Angle Between Instances, less the original zone(s) being duplicated) or create a specified number of rotated duplicates.

- **Axis** - For 3D zones, choose the axis around which rotation should occur. Not available for 2D zones, which are always rotated about a notional axis perpendicular to the zone.

- **Origin** - For rotation around a point other than (0, 0) or (0, 0, 0), enter the location of the origin using the X, Y, and (for 3D zones) Z fields.

- **Zones to Duplicate** - Click, Control-click, and/or Shift-click in the zone list to select one or more zones.

- **Select by Time Strand** - For transient data, if this checkbox is toggled on, the zones in the Zones to Duplicate list are grouped by time strand, so that selecting a zone selects all the zones in that time strand

- **Add Zones to Existing Strands** - For transient data, adds the duplicate zones to the same time strand as the original zones if toggled on. Otherwise, the duplicate zones are assigned new strand IDs if the source zones belonged to strands, otherwise they are made static.

Using a macro, it is possible to rotate around arbitrary axes rather than just X, Y, and Z, and to specify exactly which variables, if any, should be rotated as spatial variables and which as vector variables, including no spatial variables at all, or multiple vector variables. See $!AXIALDUPLICATE in the Scripting Guide.

Data Extraction from an Existing Zone

You may create new zones by extracting (or interpolating) data from existing zones in a number of ways. Derived objects, such as contour lines, FE-boundaries, iso-surfaces, slices, or streamtraces may be extracted to be independent zones. You may also extract data using a specified slice plane, discrete points, points from a polyline, or points from a geometry.

The procedures for extracting derived objects are discussed in the chapters related to those objects. For details see Chapter 9: “Contour Layer”, Section 15 - 3 “Streamtrace Extraction as Zones”, and Section 16 - 6 “Iso-Surface Extraction”. Extracting slices, both derived and arbitrarily defined, is described in Section 14 - 2 “Extracting Slices to Zones”.

20 - 6.1 Subzone Extraction

To create a subzone of an existing ordered zone, select Extract>Subzone from the Data menu.

Subzone extraction is available for ordered zones only.
The Extract Subzone dialog has the following options:

- **Source Zone** - Select the source zone (ordered zones only).
- **Index Range from Source Zone** - Specify the desired subzone as a range of I, J, and K-indices. You may use the special value 0 or \(M_x \) to indicate the maximum of that index, and the values \(M_x - 1 \) to represent one index less than the maximum, \(M_x - 2 \) for two less than the maximum, and so forth.
- **Extract** - Select the [Extract] button to create the zone. Each extracted subzone is given the name “Subzone.”

20 - 6.2 Data Point Extraction

You may create an I-ordered zone by extracting data points from the current dataset along a polyline that lies within the edges of a zone with connectivity. To extract points along a polyline:

1. If necessary, create the polyline geometry using the \(\square \) polyline tool. Click each of the points in the polyline, then double-click the last point (or press Escape) to finish the polyline. You may also extract points along an already-existing polyline.
2. Right-click the polyline geometry in the workspace and choose Extract Points from the context menu to open the Extract Data Points dialog.
3. Use the Extract Data Points dialog to control how data points are extracted. The dialog has the following options:
 - **Extract regular points along geometry** - Select this option to extract the specified number of points distributed uniformly along the geometry.
 - **Number of points to extract** - Enter the number of points to extract. This field is available only if you are extracting regular points along a geometry.
• Extract only points which define geometry - Select this option to extract only the endpoints of the segments in the geometry.

Any necessary interpolation is performed using the same method used in probing. The spatial interpolation method is piecewise-linear by default. Cells are, in effect, divided by adding nodes at their center and face centers, until all cell pieces are tetrahedral. The extra nodes are calculated by arithmetically averaging the variable values at all nodes (for the cell-center node) or all face nodes (for the face-center nodes). Within each of these sub-cells, variables are interpolated linearly.

From triangular faces, linear interpolation is used to determine the value of the extracted points. On quadrilateral faces, a point of the center of mass of the quadrilateral is created and assigned a value equal to the average of the four corners. The surface is then broken down into four triangles using this center point and the four corners, and the extracted point value is interpolated linearly on the face of the triangle that surrounds it.

If a surface utilizes cell-centered values, the nodal values at the corners are interpolated, then the extracted points are interpolated from those nodal values. Volume interpolation, piece-wise by default, calculates to first-order accuracy. For second-order accuracy (tri-linear interpolation), add the following line to your tecplot.cfg file:

```
$INTERFACE DATA (VOLUMECELLINTERPOLATIONMODE = TRILINEAR)
```

4. If you created a new polyline for the extraction operation, you may wish to delete it by again right-clicking it, then choosing Delete from the context menu.

20 - 7 Zone Deletion

In any dataset with more than one zone, you can delete any unwanted zones. To delete a zone, select Delete>Zone from the Data menu. You cannot delete all zones; if you attempt to delete all zones, the lowest numbered zone is not deleted.
20 - 8 Variable Deletion

To delete a variable, select Delete Variable from the Data menu. The Delete Variable dialog is shown below.

When deleting a variable, keep in mind that deleting a variable removes it from all zones. You cannot delete a variable used in a Calculate-on-demand function. See Section 21 - 6.2 “Calculate-on-demand Variables”.

20 - 9 Data Interpolation

In Tecplot 360 EX, interpolation refers to assigning new values for the variables at data points in a zone based on the data point values in another zone (or set of zones).

For example, you may have a set of data points in an I-ordered zone that are distributed randomly in the XY-plane. This type of data is sometimes referred to as unordered, ungridded, or random data. In Tecplot 360 EX, it is referred to as irregular data. Using data in this form, you can create mesh plots and scatter plots, but you cannot create contour plots, light-source shading, or streamtraces.

In Tecplot 360 EX, you can interpolate the irregular I-ordered data onto an IJ-ordered mesh, and then create contour plots and other types of field plots with the interpolated data. You can also interpolate your 3D, I-ordered irregular data into an IJK-ordered zone and create 3D volume plots from the IJK-ordered zone. You can even interpolate to a finite element zone.

The accuracy of the interpolation will depend on your data, the density of the destination grid, how well the grid fits the area of your unorganized zone and the settings used for interpolation.

There are two types of interpolation available:

- **Linear Interpolation** - Interpolate using linear interpolation from a set of finite element, IJ-ordered, or IJK-ordered zones to one zone.
- **Inverse-Distance Interpolation** - Interpolate using an inverse-distance weighting from a set of zones to one zone.
- **Kriging** - Interpolate using Kriging from a set of zones to one zone.

20 - 9.1 Linear Interpolation

Use the Linear Interpolation dialog to interpolate data from one or more ordered or finite element zones onto a destination zone. Irregular I-ordered data cannot be used for the source zones in linear interpolation; you may be able to first create a finite element zone from an irregular, I-ordered zone by using triangulation. (See Section 20 - 10 “Irregular Data Point Triangulation”.)
Linear interpolation finds the values in the destination zone based on their location within the cells of the source zones. The value is linearly interpolated to the destination data points using only the data points at the vertices of the cell (or element) in the source zone(s).

To perform linear interpolation:

1. Read the dataset to be interpolated into Tecplot 360 EX (the source data).
2. Read in or create the zone onto which the data is to be interpolated (the destination zone).
3. From the Data menu, choose Interpolate>Linear.
4. From the Linear Interpolation dialog, select the zones to be interpolated from those listed in the Source Zone(s) scrolled list.
5. Select which variables are to be interpolated from those listed in the Variable(s) scrolled list.
6. Select the destination zone into which to interpolate. Existing values in the destination zone will be overwritten.
7. Outside Points - Optionally, choose how to treat points that lie outside the source-zone data field. You have two options:
 - Do Not Change - Preserves the values of points outside the data field. Do Not Change is appropriate in cases where you are using one interpolation algorithm inside the data field, and another outside.
 - Constant - Sets all points outside the data field to a constant value that you specify.
8. Click the [Interpolate] button to perform the interpolation.
9. While the interpolation is proceeding, a working dialog appears showing the progress of the interpolation.

If you select [Cancel] during the interpolation process, the interpolation is terminated prematurely. The destination zone will be left in an indeterminate state, and you should redo the interpolation.

20 - 9.2 Inverse-Distance Interpolation

Inverse-distance interpolation averages the values at the data points from one set of zones (the source zones) to the data points in another zone (the destination zone). The average is weighted by a function of the distance between each source data point to the destination data point. The closer a source data point is to the destination data point, the greater its value is weighted.

326
In many cases, the source zone is an irregular dataset—an unordered set of data points without any mesh structure (a list of points). Inverse-distance interpolation may be used to create a 3D surface or a 3D volume field plots of irregular data. The destination zone can, for example, be a circular or rectangular zone created within Tecplot 360 EX (see “Zone Creation” on page 317).

To perform inverse-distance interpolation in Tecplot 360 EX, use the following steps:

1. Read the dataset to be interpolated into Tecplot 360 EX (the source data).
2. Read in or create the zone onto which the data is to be interpolated (the destination zone).
3. From the Data menu, choose Interpolate-Inverse Distance.
4. From the Inverse-Distance Interpolation dialog, select the zones to be interpolated from those listed in the Source Zone(s) list.
5. Select which variables are to be interpolated from those listed in the Variable(s) list.
6. Select the Destination Zone into which to interpolate. Existing values in the destination zone will be overwritten.
7. [OPTIONAL] Enter the minimum distance used for the inverse-distance weighting in the Minimum Distance text field. Source data points which are closer to a destination data point than this minimum distance are weighted as if they were at the minimum distance. This tends to reduce the peaking and plateauing of the interpolated data near the source data points.
8. [OPTIONAL] Enter the exponent for the inverse-distance weighting in the Exponent text field.

The exponent should be set between 2 and 5. The algorithm is speed-optimized for an exponent of 4, although in many cases, the interpolation looks better with an exponent of 3.5.

9. [OPTIONAL] Select the method used for determining which source points to consider for each destination point from the Point Selection drop-down. There are three available methods, as follows:
 - Nearest N: For each point in the destination zone, consider only the closest n points to the destination point. These n points can come from any of the source zones. This option may speed up processing if n is significantly smaller than the entire number of source points.
Data Operations

- **Octant** - Like Nearest N above, except the \(n \) points are selected by coordinate-system octants. The \(n \) points are selected so they are distributed as evenly as possible throughout the eight octants. This reduces the chances of using source points which are all on one side of the destination point.

- **All** - Consider all points in the source zone(s) for each point in the destination zone.

10. Click **Interpolate** to perform the interpolation.

If you select the [Cancel] button during the interpolation process, the interpolation is terminated prematurely. The destination zone will be left in an indeterminate state, and you should redo the interpolation.

Inverse-distance interpolation ignores the IJK-mode of IJK-ordered zones. All data points in both the source and destination zones are used in the interpolation.

The Inverse-Distance Algorithm

The algorithm used for inverse-distance interpolation is simple. The value of a variable at a data point in the destination zone is calculated as a function of the selected data points in the source zone (as defined in the **Point Selection** drop-down, accessed via **Data>Interpolate>Inverse-Distance**).

The value at each source zone data point is weighted by the inverse of the distance between the source data point and the destination data point (raised to a power) as shown below:

\[
\phi_d = \frac{\sum w_i \phi_s}{\sum w_i} \quad \text{summed over the selected points in the source zone}
\]

where \(\phi_d \) and \(\phi_s \) are the values of the variables at the destination point and the source point, respectively, and \(w_i \) is the weighting function defined as:

\[
w_i = D^{-E}
\]

\(D \) in the equation above is the distance between the source point and the destination point or the minimum distance specified in the dialog, whichever is greater. \(E \) is the exponent specified in the **Exponent** text field.

Smoothing may improve the data created by inverse-distance interpolation. Smoothing adjusts the values at data points toward the average of the values at neighboring data points, removing peaks, plateaus, and noise from the data. See **Section 20 - 2 "Data Smoothing"** for information on smoothing.

Kriging and Inverse Distance Interpolation Improvements

For better results with 3D data, try changing the range of your Z-variable to one similar to the X-range the Y-range. Also, set Zero Value to 0.05.
Data Interpolation

20 - 9.3 Kriging

Kriging is a more complex form of interpolation than inverse-distance. It generally produces superior results to the inverse-distance algorithm but requires more computer memory and time.

To perform kriging in Tecplot 360 EX, perform the following steps:

1. Read the dataset to be interpolated into Tecplot 360 EX (the source data).
2. Read in or create the zone onto which the data is to be interpolated (the destination zone).
3. From the **Data** menu, choose **Interpolate-Kriging**

4. From the Kriging dialog, select the zones to be interpolated from those listed in the Source Zone(s) scrolled list.

 Tecplot 360 EX uses the active frame’s axis assignments to determine the variables to use for coordinates in kriging. However, any axis scaling is ignored.

5. Select which variables are to be interpolated from those listed in the Variable(s) scrolled list.
6. Select the destination zone into which to interpolate. Existing values in the destination zone will be overwritten.
7. In the **Range** text field, optionally enter the distance beyond which source points become insignificant for the kriging. The value is stated as the fraction of the length of the diagonal of the box which contains the data points. A range of zero means that any point not coincident with the destination point is statistically insignificant; a range of one means that every point in the dataset is statistically significant for each point. In general, values between 0.2 and 0.5 should be used.

8. In the **Zero Value** text field, optionally enter the semi-variance at each source data point on a normalized scale from zero to one. Semi-variance is the certainty of the value at a data point. A value of zero means that the values at the source points are exact. Greater values mean the values at the source points have some uncertainty or noise. Zero is usually a good number for the zero value, and it causes the interpolated data to fit closely to all the source data points.

329
Data Operations

Increasing the zero value results in smoother interpolated values that fit increasingly more to the average of the source data.

9. Select the overall trend for the data in the Drift drop-down. This can be Linear (default), None, or Quadratic.

If the Drift is set to Linear or Quadratic, Tecplot 360 EX requires that the points selected be non-collinear (non-coplanar in 3D). To avoid this limitation, set Drift to None. Alternatively, you can eliminate coincident points by Irregular Data Point Triangulation before you interpolate.

10. Select the method used for determining which source points to consider for each destination point from the Point Selection drop-down. There are three available methods, as follows:
 - Nearest N - For each point in the destination zone, consider only the closest \(n \) points to the destination point. These \(n \) points can come from any of the source zones.
 - Octant (default) - Like Nearest N above, except the \(n \) points are selected by coordinate-system octants. The \(n \) points are selected so they are distributed as evenly as possible throughout the eight octants. This reduces the chances of using source points which are all on one side of the destination point.
 - All - Consider all points in the source zone(s) for each point in the destination zone. In general, you should not use the All option unless you have very few source points.

The Point Selection option is very important for kriging, because kriging involves the computationally expensive inversion and multiplication of matrices. The computational time and memory requirements increase rapidly as the number of selected source data points increases.

11. Click Interpolate to begin kriging. While kriging is proceeding, a progress bar appears in the status bar, along with a Stop button that can be clicked to interrupt the operation.

If you interrupt the kriging process, the destination zone is left in an indeterminate state, and you should redo the kriging or delete the destination zone.

The Kriging Algorithm

Kriging and Inverse Distance Interpolation Improvements: For better results with 3D data, try changing the range of your Z-variable to one similar to the X-range the Y-range. Also, set Zero Value to 0.05.

20 - 10 Irregular Data Point Triangulation

Triangulation is a process that connects data points to form triangles. You can use triangulation to convert irregular I-ordered datasets into a finite element surface zone. Triangulation is one of the two options for creating field plots from irregular data. The other is interpolation, discussed in Section 20 - 9 "Data Interpolation." Triangulation preserves the accuracy of the data by creating a finite element surface zone with the source data points as nodes and a set of triangle elements. Triangulation works best for irregular data.
To triangulate 2D data, make sure your plot is in 2D Cartesian mode and select **2D Triangulation** from the **Data** menu. The **2D Triangulation** dialog has the following options:

- **Source Zone(s)** - Select the zone or zones to triangulate from the list.
- **Use Boundary Zone(s)** - Toggle-on to specify a boundary zone for the triangulation. Select the boundary zone or zones from the list. The boundary zones define the boundaries in the triangulation region. If you do not include boundary zones, Tecplot 360 EX assumes the data points lie within a convex polygon and that all points in the interior can be connected.
 - **Include Boundary Points** - Toggle-on to include the points in the boundary zones in the triangulated zone.
- **Triangle Keep Factor** - This factor is used to define which triangles on the outside of the triangulated zone are “bad” and not included in the triangulation.

 At the completion of triangulation, Tecplot 360 EX attempts to remove bad triangles from the outside of the triangulation. The keep factor is a description of the shape of the triangle between zero (three collinear points) and 1.0 (an equilateral triangle). Typical settings are values between 0.1 and 0.3; settings above 0.5 are not permitted. Bad triangles will not be removed if removing the triangle strands a data point.

- **Triangulate** - Click the **[Triangulate]** button to perform the triangulation.

After triangulating your data, you can use the resulting finite element surface zone to create plots. Generally, you turn off the original zone(s) and plot the new zone only, but you can, for example, plot a scatter plot of the original zone(s) along with the contours of the new zone.

20 - 11 Data Spreadsheet

All ordered and finite element data can be viewed using Tecplot 360 EX’s data spreadsheet (accessed via **Data>Spreadsheet**). The data may be modified within the spreadsheet in order to change the plots Tecplot 360 EX produces.

Changes to the spreadsheet do not immediately alter the original data file stored on disk. However, saving the plot of altered data as a layout file will save the changes in the data journal. You have the option of overwriting your original data file or creating a new file with the altered data.
Data Operations

The spreadsheet displays Tecplot 360 EX's data differently depending on the type of zone being examined. An example of the Data Spreadsheet dialog for a finite element zone is shown here; note the X, Y, and Z variables.

I-ordered and finite element datasets are displayed with each zone's variable displayed in a column. IJ-ordered datasets are displayed in the spreadsheet with I along the rows and J along the columns. IJK-ordered datasets are displayed one plane at a time: selecting the K-plane displays I along the rows and J along the columns, selecting the J-plane displays I along the rows and K along the columns, and selecting the I-plane displays J along the rows and K along the columns. With IJK-ordered data, the slice of interest can be selected by entering a specific index or using the up and down arrows provided.

If a variable is not needed in your plot, it may not currently be loaded into memory. In this case, “Not Loaded” is displayed in every cell of that variable's column. Using the variable in your plot will cause it to be loaded. Click the [Load Variables] button to open the Load Variable dialog and load any variables you wish to view and edit in the spreadsheet.

To change the data spreadsheet's display format, select the desired format (Integer, Float, Exponent, or Best Float) from the Format drop-down menu. When Float or Exponent is selected, you may also specify the precision in the Precision field. These options do not affect the actual data, only how it is displayed.

To modify data:

1. In the Data Spreadsheet dialog, select a zone and variable to modify. Use the menu at the top of the dialog to choose the zone, then find the column representing the desired variable.
2. If the variable is shared with another zone or zones, the Alter in all Shared Zones toggle is enabled. Select this toggle to keep the variable shared as you modify data, propagating changes to the other zones that share the variable. If this toggle is not selected, the variable will be changed in the selected zone and no longer shared with any other zones. See also Section 5 - 3 "Data Sharing”.
3. Select the value of interest from the spreadsheet by finding its row. This will highlight and expand the value to its full precision.
4. To replace the highlighted value, simply enter the new value. The value is instantly replaced with the new digits entered.
5. To modify only a few digits from a highlighted value, double-click the cell to switch to edit mode. Click again or use the arrow keys to position the edit cursor at the desired position. Make any desired modifications to the existing value such as inserting or deleting digits.

6. To undo a modification of a given cell before you have committed it, press Escape. To commit a modification, press Enter, Tab, or Shift-Tab to move to the next cell, or simply select on another cell.
Data Operations
CFD Data Analysis

Tecplot 360 EX helps you analyze computational fluid dynamics and similar solutions. Data analysis capabilities are available via the Analyze menu, and include:

- Function calculations, including grid quality functions (such as skewness) and flow variable functions (such as vorticity). Many of these functions duplicate functions that are available in NASA's PLOT3D and FAST plotting programs.
- Integration of input or calculated data, including scalar, vector-dot-normal and vector-dot-tangential integrands, as well as a special forces and moments option for calculating lift, drag and moments.
- Turbulence variable calculations.
- Particle path and streakline calculations, including particles with mass.
- Error analysis using Richardson extrapolation.
- Flow feature detection, including vortex cores, separation and attachment lines, and shock surfaces.

Units (Dimensions)

Analysis may be performed with data representing any system of units or dimensions, including non-dimensional data. All dataset variables and other parameters must, however, be in the same set of units. Unit conversions are not available. Linux and Mac OS X users may wish to use the units utility for unit conversions. Analysis results will be in the same units as the data.

21 - 1 Specifying Fluid Properties

Fluid properties, such as viscosity, describe the fluid model used to create the dataset. These properties are required for many calculations performed by other dialogs. They are set via the Fluid Properties dialog. Values entered must be dimensionally consistent with each other and with your dataset. If you imported your data using the PLOT3D data loader, the default fluid properties will most likely suit your needs.

For a layout with multiple datasets, a separate set of fluid properties is maintained for each dataset. You can copy the settings from one dataset to another using the Save Settings and Load Settings options in the Analyze menu. These actions also transfer the settings made in the Reference Values, Field Variables, Geometry and Boundaries, and Unsteady Flow Options dialogs.
The Fluid Properties dialog is accessed by selecting Fluid Properties from the Analyze menu.

The Fluid Properties dialog allows you to specify properties for a compressible or incompressible fluid. For incompressible (uniform density) fluids, you specify density, specific heat, viscosity and conductivity. For compressible (variable density) fluids, you specify the gas constant, gamma (the ratio of specific heats), viscosity and conductivity.

By default, each fluid property is a constant. However, each property can be overridden by a field (dataset) variable (with the exception of density). When a field variable is assigned, the local value of that variable is used for field calculations using that property, and the constant value is used only for global calculations, such as the calculation of reference (free-stream) quantities. To assign a field variable for a particular property, set the Use Field Variable toggle and click Select to choose a variable from the current dataset from the Select Variable dialog.

- **Incompressible** - Toggle-on to indicate the fluid is incompressible. For incompressible fluids, you must specify density, specific heat, viscosity and conductivity. For compressible fluids, you must specify gas constant, gamma, viscosity and conductivity.

- **Density** (for incompressible fluids only) - Density represents the mass of fluid occupied by a unit volume. Its dimensions are [Mass]/[Length]**3.

- **Specific Heat** (for incompressible fluids only) - Specific heat is the amount of energy required to raise a unit mass of the fluid one degree in temperature. Dimensions are [Length]**2/[Time]**2/[Temperature].

- **Gas Constant** (for compressible fluids only) - The specific gas constant has dimensions of [Length]**2/[Time]**2/[Temperature].

- **Gamma** (for compressible fluids only) - Gamma represents the ratio of the specific heat at constant pressure to the specific heat at constant volume, a non-dimensional quantity.

- **Viscosity** - The dynamic viscosity’s dimensions are [Mass]/[Length][Time].

- **Conductivity** - The thermal conductivity’s dimensions are [Mass][Length]/[Time]**3[Temperature].
21 - 1.1 Specifying Incompressible Fluid Properties

When the Incompressible check box is selected, the density of the fluid and its specific heat \((C_v)\), viscosity \((\mu)\), and conductivity \((k)\) must be entered. Gamma \((\gamma)\), the ratio of specific heats at constant volume and pressure, is unity for incompressible fluids, so the Gamma section is inactive. Gas Constant \((\hat{R})\) is also inactive. The thermal and caloric equations of state for incompressible fluids are shown below. \(\rho\) is density, and \(e\) represents the internal energy per unit mass.

\[
\rho = \text{const} \\
\frac{e}{\rho} = C_v T
\]

Since the density entered in the Fluid Properties dialog represents the density of the fluid throughout the physical domain, you are not allowed to enter a reference value for density in the Reference Values dialog, or choose a density field variable on the Field Variables dialog (see Section 21 - 3.2 “Identifying State Variables”).

Specific heat \((C_v)\) is the amount of energy required to raise a unit mass of the fluid one degree. It has dimensions of:

\[
\frac{\text{Length}^2}{\text{Time} \times \text{Temperature}} = \frac{\text{Energy}}{\text{Mass} \times \text{Temperature}}
\]

Viscosity \((\mu)\) represents the dynamic viscosity coefficient, in units of

\[
\frac{\text{Mass}}{\text{Length} \times \text{Time}}
\]

Conductivity \((k)\) is the thermal conductivity of the fluid, in units of:

\[
\frac{\text{Mass} \times \text{Length}}{\text{Time}^2 \times \text{Temperature}}
\]

21 - 1.2 Specifying Compressible Fluid Properties

When the Incompressible check box is not selected, the specific gas constant, gamma, viscosity and conductivity must be entered. Since density is not a constant property of compressible fluids, the Density text field is inactive, as is the Specific Heat section of the dialog. The thermal and caloric equations of state for compressible fluids are shown below. \(p\) is pressure, and \(e\) is internal energy per unit mass:

\[
p = \rho RT \\
\frac{e}{\rho} = C_v T
\]

The caloric equation of state assumes constant specific heats for the fluid. In situations where this assumption is not valid (such as high-temperature flows) Tecplot 360 EX will calculate inaccurate values of temperature. For these cases, it is best to have your solver output temperature, and then input it into Tecplot 360 EX for other calculations (see Section 21 - 3.2 “Identifying State Variables”). If your solution represents a chemically reacting flow, your solver should also output \(R\) and \(\gamma\) as field variables, which you can identify as discussed earlier in this chapter in Section 21 - 1.1 “Specifying Incompressible Fluid Properties”.

The gas constant is the universal gas constant divided by the molecular weight of the fluid:

\[
R = \frac{\hat{R}}{M}
\]
giving units of:

\[\frac{\text{Length}^2}{\text{Time} \times \text{Temperature}} \]

Gamma is the ratio of the gas specific heats and is non-dimensional:

\[\gamma = \frac{C_p}{C_v} \]

21 - 1.3 Working with Non-dimensional Data

Consider a case where temperature is non-dimensionalized by dividing it by free-stream temperature:

\[T \Rightarrow \frac{T}{T_\infty} \]

and pressure is non-dimensionalized with gamma (the ratio of specific heats) and free-stream pressure:

\[p \Rightarrow \frac{p}{\gamma p_\infty} \]

We wish to know what to enter for the gas constant in the Fluid Properties dialog. We plug what we know into the thermal equation of state (where \(\rho \) is density and \(\gamma \) is the gas constant):

\[p = \rho R T \]

\[p = \frac{\rho}{\gamma p_\infty} \times \frac{R}{(1) \times \frac{p}{(2) \times \frac{T}{T_\infty}}} \]

Since the equation of state must hold for the free-stream conditions, we know:

\[p_\infty = \rho_\infty R T_\infty \]

From this, we see that the product of denominators (1) and (2) in the second-previous equation must equal: \(\gamma \rho_\infty R T_\infty \)

\[\rho R \Rightarrow \frac{\rho R}{\gamma p_\infty} \]

This doesn’t entirely answer our question, however, and in the absence of additional information, we simply need to decide how \(\gamma \) and \(\rho \) are each individually non-dimensionalized. The requirement we just determined is that the product of the two must be non-dimensionalized by \(\gamma \rho_\infty R T_\infty \). So we may decide to non-dimensionalize density by free-stream density, \(\rho_\infty \), which leaves the gas constant non-dimensionalized (that is, divided) by \(\gamma \rho_\infty R T_\infty \). In the Fluid Properties dialog, we enter \(\frac{1}{\gamma} \) for Gas Constant. If we chose to leave Gas Constant at unity, density would be non-dimensionalized by gamma and free-stream density, \(\gamma \rho_\infty \).

21 - 2 Specifying Reference Values

Certain calculations, such as Pressure Coefficient (see Section 21 - 6 “Calculating Variables”) require reference, or free-stream values. If you loaded your data with the PLOT3D loader, this information has probably been loaded along with the data. Otherwise, you may supply this information using the Reference Values dialog.

For a layout with multiple datasets, separate settings are maintained for each dataset. You can copy the settings from one dataset to another using the Save Settings and Load Settings options in the Analyze menu. These actions also transfer the settings made in the Fluid Properties, Geometry and Boundaries, Field Variables, and Unsteady Flow Options dialogs.
Identifying Field Variables

There must be data in the active frame for the Reference Values dialog to be displayed. The Reference Values dialog is shown below.

The dialog options are as follows:

- **U Velocity/Mach Number**: In the first two text fields, you may specify free-stream velocity as either U Velocity and V Velocity, or as Mach Number and Angle of Attack. (Z-velocity is assumed to be zero.) Angle of attack must be specified in degrees; flow proceeding in the +X- and +Y-direction has a positive angle of attack. For incompressible flow (see Section 21 - 1.1 “Specifying Incompressible Fluid Properties”) only U and V-velocities may be specified.

- **Pressure/Density**: The third text field allows you to specify either Density or Pressure. Select the corresponding option in the drop-down. For incompressible flow, you must specify Pressure, because density is specified in the Fluid Properties dialog.

- **V Velocity/Angle of Attack**: If the first field is set to U Velocity, set this field to V Velocity. If it is set to Mach Number, set this field to Angle of Attack.

- **Temperature/Sound Speed**: The final text field allows you to specify Temperature or Sound Speed. Temperature must be in absolute units, such as Kelvin or Rankine. For incompressible flow you must specify temperature. For incompressible fluids, the speed of sound is undefined and the density of the fluid is constant.

21 - 3 Identifying Field Variables

Data analysis is performed on data in the active frame. Many of these calculations require information about what the data represents. For example, if you wish to calculate pressure from your data you must identify two other thermodynamic state variables with which Tecplot 360 EX can perform the calculation using the thermal equation of the state. X, Y, and Z are taken from the axis assignments for the 2D or 3D plot in the active frame. The FLUENT and PLOT3D data loaders supply most or all of the remaining information to Tecplot 360 EX. You may also supply this information using the Field Variables dialog.

For a layout with multiple datasets, separate settings are maintained for each dataset. You can copy the settings from one dataset to another using the Save Settings and Load Settings options in the Analyze menu. These actions also transfer the settings made in the Fluid Properties, Geometry and Boundaries, Reference Values, and Unsteady Flow Options dialogs.
You must have data in the active frame to open the **Field Variables** dialog. The **Field Variables** dialog is shown below.

The top section of the dialog allows you to specify a vector of convective variables, either velocity or momentum (velocity multiplied by density). The bottom section of the dialog contains two drop-down menus and associated text fields for identifying two thermodynamic state variables in your dataset.

The variables selected in the Field Variables dialog are per unit volume.

21 - 3.1 Choosing the Convective Variables

Select the convective variables in your dataset by clicking the [Select] button in the top section of the **Field Variables** dialog. Choose one of the two options on the **Field Variables** dialog to indicate whether these variables represent pure velocity or momentum.

The convective variables used in data analysis are not the same variables that are used to create vector plots for your solution data, though their initial values may be set the same.

21 - 3.2 Identifying State Variables

The **State Variables** region of the dialog allows you to identify up to two variables, such as pressure and temperature, in your data. From the two drop-downs, select any two choices from the types: **Pressure**, **Temperature**, **Density**, **Stagnation Energy**, **Mach Number**, or **Not Used**. Then click **Select**, and choose the corresponding variable(s) from your data. If you have only one thermodynamic variable, select “Not Used” in one of the drop-downs. For incompressible flow, (see Section 21 - 1.1 “Specifying Incompressible Fluid Properties”) you may specify Pressure for one variable, and you may specify Temperature or Stagnation Energy (per unit volume) for the other.

Temperature must be in absolute units, such as Kelvin or Rankin.

The [Select] button launches the **Select Variables** dialog which allows you to select variables in your dataset. The selections in the drop-down menus mentioned above determine whether these variables represent pressure, temperature, density, stagnation energy or Mach number.
21 - 4 Setting Geometry and Boundary Options

For certain calculations, you will need to specify information about your data that Tecplot 360 EX may not automatically detect. For example, a 2D solution may actually represent a 3D axisymmetric solution, affecting any integrations you perform. Adjacent zones may be connected, affecting other calculations such as grid stretch factors, gradients, and flow features such as vortex cores. Certain zones or zone surface regions may represent wall boundaries in your solution, on which separation and attachment lines may be calculated. The FLUENT data loader identifies most of these characteristics for you when you import FLUENT case and data files. You may also specify them with the Geometry and Boundaries dialog (accessed via the Analyze menu).

For a layout with multiple datasets, separate settings are maintained for each dataset. You can copy the settings from one dataset to another using the Save Settings and Load Settings options in the Analyze menu. These actions also transfer the settings made in the Fluid Properties, Reference Values, Field Variables, and Unsteady Flow Options dialogs.

You must have data in the active frame to launch the Geometry and Boundaries dialog. Select “Geometry and Boundaries” from the Analyze menu to display the dialog.

- Specifying an Axisymmetric Solution - Selecting Axisymmetric About Variable enables the Variable drop-down menu and allows you to enter a value in the Equals field. Select X or Y from the Variable drop-down, and enter the constant value of this variable that defines the axis of symmetry. If you choose the axisymmetric option, all integrations will be performed as 3D axisymmetric integrations by multiplying the integrand by \(\frac{2\pi}{r} \), where \(r \) is the distance from the specified axis of symmetry. Integrations are described in Section 21 - 7 “Performing Integrations”.

- Connecting Adjacent Zones - Tecplot 360 EX can calculate whether nodes on the boundaries of adjacent zones (or the same zone) overlap. It uses this information in calculating the Stretch Ratio grid quality function (see Section F - 2.2 “I, J, or K-stretch Ratio”), calculating gradients, and extracting fluid flow features (see Section 21 - 11 “Extracting Fluid Flow Features”). Connections between zones are calculated cell face by cell face. The two cells are considered connected wherever all nodes of a particular boundary cell face overlap all nodes of an adjacent boundary cell face.
For unsteady flows (see Section 21 - 5 "Unsteady Flow"), only zones within the same time level are examined for connections. To enable this option, select the Connect Adjacent Zones option and enter the maximum distance at which two nodes will be considered to overlap in the Nodal Proximity text field. Note that this text field value is also used for zone-type boundaries, discussed below.

The zone connection feature is overridden, cell-by-cell, by any face neighbors contained in a dataset. Both connection mechanisms are overridden by any boundary conditions set on a particular face. That is, if you specify a boundary condition in the Geometry and Boundaries dialog that covers a specific cell face, that face will not be connected to an adjacent cell, irrespective of any face neighbors or overlapping nodes present.

21 - 4.1 Performance Considerations

Establishing connections across zone boundaries allows Tecplot 360 EX to calculate better gradient quantities at these locations. There may be a substantial performance penalty for ordered-zone calculations, because at these boundary locations, Tecplot 360 EX uses the finite element least-squares formulation for calculating the gradients. Refer to Section 21 - 6.5 "Gradient Calculations" for a discussion of gradient calculations.

21 - 4.2 Specifying Boundaries and Boundary Conditions

You may associate cell boundary faces (cell faces on the exterior of a zone) with a boundary condition. There are two reasons why you might want to do this:

- To ensure that boundary faces are not connected to adjacent cells (see the above discussion on connections).
- To identify wall boundaries in 3D solutions for feature extraction (see Section 21 - 11 "Extracting Fluid Flow Features").

If you set a boundary condition on a particular cell boundary face, that face will not be considered connected to any other cells by the gradient calculation routines. This may be advantageous, for example, in solutions containing a thin flat plate, where nodes on either side of the flat plate overlap and would otherwise be connected by the connection mechanism.

For three-dimensional flow solutions, you can use the Extract Flow Features dialog to extract separation and attachment lines. These lines are only calculated on boundaries you have identified as wall boundaries. While other boundary conditions may be specified, this information is not currently used, aside from inhibiting connections.

Specifying the Default Boundary Condition

Tecplot 360 EX keeps track of all unconnected boundary cell faces (see Section 21 - 4 "Setting Geometry and Boundary Options"). It applies the default boundary condition to any unconnected faces to which you do not specifically apply a boundary as described below. Choose the desired boundary condition from the Default Boundary Condition drop-down. The default boundary condition is at the bottom of the boundary ‘pecking order.’ If a cell boundary face is not covered by any other boundary condition, and is not connected to any other cells by either Geometry and Boundaries connection settings or Tecplot 360 EX face neighbors, then the default boundary condition is applied to it.

Identifying Zone Boundaries

Regions on the boundaries of zones may be explicitly identified and associated with particular boundary conditions. For ordered zones only, you may identify a boundary region by zone boundary (that is, the I=1 boundary) and index range on that boundary. For all zone types, you may identify a boundary region by selecting one or more boundary zones.
Boundary zones are zones of dimension one less than the current plot type. They are surfaces in 3D Cartesian plots, or lines in 2D Cartesian plots. Boundaries are considered to exist wherever the nodes of these boundary zones coincide with nodes on the boundaries of volume zones in 3D Cartesian plots, or surfaces in 2D Cartesian plots. For example, you can identify boundary regions on a tetrahedral (3D) zone using triangular zones that lie on the surface of the tetrahedral zone. The boundary is applied wherever the nodes of the triangular zone overlap boundary nodes of the tetrahedral zone. As with connecting adjacent zones, the matching is done cell face by cell face using the Nodal Proximity setting of the Geometry and Boundaries dialog to determine how close to each other nodes must be to be considered overlapping.

It is easy to create boundary zones by extracting subzones from ordered zones in your dataset. For finite element zones, it may be possible to extract the desired boundary region using blanking and FE-boundary extraction. In general, however, finite element boundary zones must come from your grid generator or flow solver.

New boundaries are created by clicking New on the Geometry and Boundaries dialog. This displays the Edit Boundary dialog, shown below.

Displaying Boundaries

The current settings of the Geometry and Boundaries dialog may be displayed by clicking the [Display Boundaries] button. This creates a new frame and plots all zone boundaries. For each zone in your solution data, one zone will be created in the new frame for each boundary condition applied to the boundary faces of that zone. The names of these zones indicate their zone of origin in your solution data and the applied boundary condition.

For each boundary face in your solution, Tecplot 360 EX applies some simple rules to determine that face’s boundary condition. First, all faces covered by the boundary definitions in the Boundaries list have the boundary conditions prescribed in the list applied to them. If a particular face is covered by more than one of these boundaries, the boundary lowest in the list takes precedence. If you have selected the Connect Adjacent Zones option, any faces not covered by the listed boundaries are then checked to see if they overlap faces of neighboring zones. Overlapping faces are assigned the boundary condition ‘Interzone Boundary.’ Finally, any boundary faces not assigned any other boundary condition will be assigned the default boundary condition you have chosen.

Since the Geometry and Boundaries dialog is modeless, you can explore the boundary definitions in this new frame prior to applying your settings. This is a convenient way to make sure you are applying the desired boundary settings.

Selecting the [Display Boundaries] button records a DISPLAYBOUNDARIES macro command if you are recording a macro file.

Since this feature creates a new frame, it cannot be saved in the data journal, and the current data journal is invalidated. If you subsequently save a layout file, you will be prompted to save a new data file.

Saving Geometry and Boundary Settings

Once you are satisfied with your geometry and boundary settings, you can save them by selecting the [Apply] button. When you apply your settings, a SETGEOMETRYANDBOUNDARIES macro is recorded (if you are recording a macro file).
21 - 4.3 The Edit Boundary dialog

The Edit Boundary dialog is displayed by clicking New on the Geometry and Boundaries dialog, or by selecting an existing boundary and then selecting Edit.

It allows you to identify a boundary of one or more zones, either by entering the zone number(s), face and index range on that face, or by entering the zone numbers of boundary zones, as discussed in Section 21 - 4 “Setting Geometry and Boundary Options”. Enter the desired options and select OK to add the boundary to the Geometry and Boundaries dialog.

Using Index Range-type Boundaries

For ordered zones, you may identify boundary regions by choosing a zone boundary, or face, and index ranges to specify a region on the face. To create an index range-type boundary, select Zone, Face and Index Range, and choose the desired boundary condition from the Boundary Condition drop-down menu. Select the zones to which this boundary will apply by entering their zone numbers in the Zone Numbers text field, or clicking Select and choosing the zones from the resulting dialog. (See Section 21 - 7 “Performing Integrations” for a description of the Select Zones dialog.) If you have selected zones by clicking in the work space, you may enter these zone numbers by clicking Use Selected. Choose a face from the Zone Face drop-down and enter the index ranges in the remaining text fields. When you select OK, the new boundary will appear in the Boundaries list in the following format:

<bc>,<set>,<face>,INDEX1MIN,INDEX1MAX,INDEX2MIN,INDEX2MAX

<bc> is the boundary condition, one of Inflow, Outflow, Wall, Slipwall, Symmetry, and Extrapolated. <set> is the set of zone numbers to which the boundary applies, enclosed in square brackets. <face> is one of I=1, I=IMAX, J=1, J=JMAX, K=1, and K=KMAX and the remaining parameters are the minimum and maximum indices on the face, with zero indicating the maximum index value, and negative numbers indicating offsets from the maximum index value. For example, the following line would indicate a wall boundary condition set on the J = 1 face of zones 2, 4, 5, and 6 from I = 1 to IMax and K = 3 to KMax - 2:

Wall,[2,4-6],J=1,1,0,3,-2

Using Boundary Zone-Type Boundaries

For all zone types, you may identify boundary zones, as discussed in Section 21 - 4 “Setting Geometry and Boundary Options”. Toggle-on Specify Boundary Zones and choose the desired boundary condition from the Boundary Condition drop-down menu. Enter the zone numbers of the boundary zones, or click Select and choose them from the resulting dialog. The boundary will be applied to any volume (3D) or surface (2D) zones in the dataset. The boundary appears in the Boundaries list in the following format:

<bc>,<set>

where <bc> is as described above, and <set> is the set of boundary zones that define the boundary.
21 - 5 Unsteady Flow

Tecplot 360 EX can perform particle path and streakline calculations for unsteady flow solutions. To enable this feature, it must know which zones correspond to which solution time levels in your unsteady solution. Each solution time level may comprise one or more zones, which may be ordered, finite element, or both. Many data loaders supply this information. You may also enter it in the Unsteady Flow Options dialog.

For a layout with multiple datasets, separate settings are maintained for each dataset. You can copy the settings from one dataset to another using the Save Settings and Load Settings options in the Analyze menu. These actions also transfer the settings made in the Fluid Properties, Reference Values, Field Variables, and Geometry and Boundaries dialogs.

The Unsteady Flow Options dialog, shown below, is displayed by selecting Unsteady Flow Options in the Analyze menu.

It contains an option allowing you to specify that your solution is steady-state, a list to display unsteady time levels you enter, as well as controls for entering new time levels.

21 - 5.1 Specifying a Steady-state Solution

To direct Tecplot 360 EX to treat your dataset as representing a steady-state solution, select the Flow Solution is Steady-State option. This setting disables the remainder of the dialog.

To direct Tecplot 360 EX to treat your dataset as an unsteady solution, toggle-off Flow Solution is Steady-State. This enables the remainder of the dialog, where you can identify your solution time levels.

An unsteady flow solution consists of a sequence of zones that represent successive solution times. Each time level may be represented by one or more zones. Identify solution time levels by entering the zone number(s) for a particular solution time level in the Zones text field and the time they represent in the Time text field, then selecting [Add]. The zones and associated time appear in the Solution Time Levels list. You may edit an existing time level by selecting it in the list. Its time and zones appear in the text fields, where you may edit them. Clicking Replace updates the currently selected list time level with the modified one.

By manually entering each time and associated zones in the text fields, you may identify all solution time levels in the current dataset. For large numbers of zones, two additional methods of entering time levels are provided. If your solution, or some portion of it was calculated with a constant time step, you may use the Group Zones by Time Step Dialog to enter all of these time levels at once. Alternatively, if your zone names contain the solution time each zone represents, you may enter all of your time levels by parsing the zone names for their corresponding solution time. These options are discussed below.
21 - 5.2 Group Zones by Time Step Dialog

The Group Zones by Time Step dialog allows you to enter a sequence of solution time levels into the Unsteady Flow dialog more easily than manually entering each time level.

- **Starting Zone** - Enter the first zone of your solution data that you wish to be included in the grouping operation.
- **Ending Zone** - Enter the final zone of your solution data that you wish to be included in the grouping operation.
- **# Zones per Level** - Enter how many zones represent each solution time level.
- **Starting Time** - Enter the solution time which will be assigned to the first zone or group of zones identified in this operation.
- **Time Step** - Enter the time step of your solution. The solution time of each time level will be calculated by adding this time step to the previous time level’s solution time.
- **Add to List** - Toggle-on to add all time levels identified by this operation to any time levels which already exist in the list. If the time calculated for any of the new levels already exists in the list, this will generate an error.
- **Replace List** - Toggle-on to replace any time levels in the list with the time levels identified in this operation.

21 - 5.3 Parsing Zone Names for Solution Time

If the names of your solution zones contain the solution time they represent, you may automatically enter all time levels by parsing the zone names for these times. Zones of the same solution time will be grouped together. The times must be preceded in the zone name by some identifiable text, such as “Time=.” Enter this text (without quotes) in the text field, then select Parse.

This action will first delete all existing time levels, and then attempt to parse the zone names for new time levels. You may wish to view your zone names before attempting this action. You may view and edit zone names with the Data Set Information dialog (accessed via the Data menu).

21 - 6 Calculating Variables

The PLOT3D functions create dataset variables which are derived from CFD grids and solution data. This group of functions initially appeared in NASA’s PLOT3D program and were expanded in PLOT3D’s successor, FAST. The functions include grid quality measures, as well as scalar and vector flow variables. For a complete list of functions, refer to Chapter E, “Calculate Variables Reference.” The functions are calculated with the Calculate dialog.
Many of these calculations are affected by settings in the Fluid Properties dialog (see Section 21 - 1 “Specifying Fluid Properties”), the Reference Values dialog (see Chapter 21: “Specifying Reference Values”) and the Field Variables dialog (see Section 21 - 3 “Identifying Field Variables”).

For the Calculate dialog to be displayed, the active frame must contain a dataset. The Calculate dialog, shown below, may then be displayed by selecting Calculate Variables in the Analyze menu.

- **Name** - This text field indicates which function will be used for the calculation. Type in the name of the desired function, or click Select to choose from a list of all available functions (see the Selecting a Function dialog). Alternatively, you may enter the equivalent PLOT3D function number, as shown in the Chapter F: “Calculate Variables Reference”.

- **Normalizing a Function** - A function may be normalized in one of two ways:
 - **Maximum Magnitude** - Divides the function value at each grid point by the maximum value in magnitude, such that the absolute value of the function is never greater than one. For vector functions, each vector component is divided by the maximum vector length.
 - **Reference Values** - Divides the function value at each grid point by the same function calculated with the reference values (the values entered in the Reference Values section of the dialog). This is the type of normalization performed by PLOT3D in its normalized functions. This option is not available for grid quality functions, since no meaningful reference values exist for these functions. It is also not available for functions whose reference value is zero, such as pressure coefficient.
 - **No Normalization** - Select to disable normalization.

- **New Var Location** - You may select the location (nodal or cell-centered) of new variables created during a calculation with the New Var Location dropdown. Variables that already exist in the dataset keep their existing locations.

- **Calculate on Demand** - This option adds the selected variable to the dataset, but delays the actual calculation until it is needed. This is discussed in more detail below.

- **Calculating the Function** - Selecting [Calculate] performs the calculation for each zone in the active frame. If this is the first time the selected function has been calculated, a new variable is added to the dataset with the name of the function. Otherwise, you will be prompted to overwrite the previously calculated variable with new values. For vector functions, each component of the function is added to the dataset, with X, Y, and Z prefixed to the variable name, and (vector) removed from the name. If the function is normalized, (Max-normalized) or (RV-normalized) is appended to the variable name, depending on the option selected. Upon completion of the calculation, you will be informed of the new variable’s minimum and maximum values and their locations.
21 - 6.1 Shared Variables

If variable sharing is enabled, all variables from which the function is calculated are shared between multiple zones, and they and the calculated variable are all at the same location (cell-centered or nodal), the new variable will be shared as well. You can see which variables in a dataset are shared in the Data Set Info dialog (accessed via the Data menu).

21 - 6.2 Calculate-on-demand Variables

Variables calculated with the Calculate-on-demand option are added to the dataset, but are not calculated until they are needed. This can save a lot of time when working with unsteady solutions where only a small number of zones are displayed at any given time. Displaying a contour plot of the calculated variable will only result in calculation of the variable for the currently active zones. Activating new zones (by, for example, advancing the solution time displayed in Tecplot 360 EX) will result in the calculation being performed only for the newly displayed zones.

If you wish to force the variable to be calculated for all zones at once, you may re-do the calculation with the calculate-on-demand toggle-off.

A calculate-on-demand variable is a function of other variables in the dataset and is calculated using the Calculate dialog. Calculate-on-demand variables are recalculated whenever a variable that they are a function-of is recalculated. For example, given Pressure = f(Gas Constant), if the value of Gas Constant changes, Pressure is recalculated.

You cannot modify a variable that is calculated on demand.

To avoid circular data dependencies, you are prevented from selecting calculate-on-demand variables in the Fluid Properties or Field Variables dialogs. In addition, you cannot delete any variables on which a calculate-on-demand variable is dependent.

If you plan to make a sequence of changes to your data and analysis settings, you can inhibit these automatic recalculations by turning off Tecplot 360 EX’s Auto-Redraw feature. Recalculation will then take place only when you redraw the frame.

21 - 6.3 Undoing a Calculation

If the data journal is valid, alterations made to the dataset with the Calculate dialog may be undone by selecting Undo from the Edit menu. This will result in Tecplot 360 EX re-executing the data journal, which may be a lengthy process.
21 - 6.4 Selecting a Function

The function name may be typed into the Name text field, or selected from a list which contains all available functions. Click [Select] to display the Select Function dialog.

Selecting a function from this dialog and selecting [OK] enters that function in the appropriate area. Functions in this list which only apply to 3D solution data begin with (3D). Vector functions, whose names are appended with (vector), calculate three vector components. Each of the available functions is described in Chapter F: “Calculate Variables Reference”.

An alternative method of selecting a function is to enter its equivalent PLOT3D function number. These numbers may also be found in Chapter F: “Calculate Variables Reference”. If a valid function number is entered into the Name text field in the Calculate dialog, Tecplot 360 EX replaces the number with the name of the corresponding function and sets the Normalize drop-down to None or Reference Values as appropriate.

21 - 6.5 Gradient Calculations

Most of the PLOT3D functions are scalar functions. Gradient calculations are a notable exception to this rule, however, and depend on values at neighboring points. Understanding how these calculations are performed may help you interpret the results.

Gradients in Ordered Zones

With an exception for boundary nodes discussed below, gradients in ordered zones are calculated using standard finite-difference formulae. To calculate pressure gradient at a particular node in an ordered zone, for example, the following formula is used:

\[
\nabla_p = \begin{bmatrix}
\frac{p_{i+1} - p_i}{x_{i+1} - x_i} \\
\frac{p_{j+1} - p_j}{y_{j+1} - y_j} \\
\frac{p_{k+1} - p_k}{z_{k+1} - z_k}
\end{bmatrix}
\]
CFD Data Analysis

Where \(\xi \) indicates the I-direction, \(\eta \) indicates the J-direction, \(\zeta \) indicates the K-direction and subscripts indicate partial derivatives. In the zone interior, derivatives are estimated with second-order central differences, such as:

\[p_{i} = \frac{p_{i+1} - p_{i-1}}{2} \quad \text{or} \quad p_{i} = p_{i+\frac{1}{2}} - p_{i-\frac{1}{2}} \]

The left-hand form is used for calculating gradients at nodes, and the right-hand form is used at cell centers.

Boundary nodes of ordered zones that are not part of a boundary specified in the Geometry and Boundaries dialog are first examined to see whether they lie on a boundary face connected to other cells via face neighbors. If not, and if the “Connect Adjacent Zones” option is set in the Geometry and Boundaries dialog, the node is examined to determine if its location coincides with any boundary nodes of adjacent zones. If either is the case, the gradients for that node is calculated using the method described below for finite element zones. Otherwise, its gradients are calculated using standard one-sided (first-order) finite differences.

Gradients in Finite Element Zones

The coordinate transformation approach used in unconnected ordered zones is generally not possible for finite element zones. Instead, the variable, say pressure, is assumed to vary linearly in all dimensions, giving:

\[p = p_{0} + \mathbf{\nabla} \cdot \mathbf{p} = \Delta x p_{x} + \Delta y p_{y} + \Delta z p_{z} = \mathbf{\nabla} \cdot \mathbf{p} \]

where \(p_{0} \) is the pressure at the node or cell center in question. Next, a matrix equation is formed with the pressure difference for all nodes neighboring the current node (see below for how these neighboring nodes are found).

\[
\begin{bmatrix}
\Delta x_{1} & \Delta y_{1} & \Delta z_{1} \\
\Delta x_{2} & \Delta y_{2} & \Delta z_{2} \\
\Delta x_{3} & \Delta y_{3} & \Delta z_{3} \\
\Delta x_{4} & \Delta y_{4} & \Delta z_{4}
\end{bmatrix}
\begin{bmatrix}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4}
\end{bmatrix}
= \begin{bmatrix}
\Delta p_{x} \\
\Delta p_{y} \\
\Delta p_{z}
\end{bmatrix}
\]

To reduce the influence of nodes far away from the value being calculated, each row \(i \) of this matrix equation is scaled by:

\[
\frac{1}{r_{i}^{2}} = \frac{1}{0.1 \times \| \mathbf{r} \|^{2}}
\]

Where \(r_{i} \) is the distance from node \(i \) to the target location (node or cell center) and:

\[
\| \mathbf{r} \|^{2} = \sum_{i} r_{i}^{2}
\]

This equation is generally over-specified and is inverted by least-squares to find the gradient vector.

If the cell-centered gradient is being calculated, each row in the above matrix equation is calculated from the values at the nodes that comprise the cell. If a node-centered gradient is being calculated, all nodes connected to that node by a cell edge are used. If the node lies on a zone boundary and is not covered by a boundary specified in the Geometry and Boundaries dialog, two additional steps are taken to give more continuous gradients across the zone boundary:
Performing Integrations

1. If the node is part of a face connected to other cells by face neighbors, then the nodes of those neighboring cells are also used;
2. Otherwise, if the "Connect Adjacent Zones" option is enabled in the Geometry and Boundaries dialog, the node is examined to see if its location coincides with a boundary node in an adjacent zone. If so, all nodes connected to that node by a cell edge are also used.

21 - 6.6 Surface Normal Calculations

With Tecplot 360 EX's CFDA variable calculation feature, you can calculate and display surface normal vectors on your plot. This includes the following steps:

1. With the Calculate dialog, calculate the "Grid K Unit Normal (vector)", using Cell Center as the New Var Location.
2. Turn on the Vector layer, selecting the components of the vector you just calculated as the vector components.
3. In the Zone Style dialog, on the Points page, choose "Cell Centers Near Surfaces" as the Points to Plot.

In detail, the steps above include the following.

To calculate the normal, choose “Calculate Variables” from the Analyze menu. In the Calculate dialog, choose “Grid K Unit Normal (vector)” as the variable to calculate (to do this, click the Select button, and scroll down in the list that appears to find "Grid K Unit Normal (vector)", and click it). Choose “Cell Center” as the New Var Location, and click Calculate.

Next, toggle-on the Vector layer in the Plot sidebar to turn on the normal vectors, and choose the components of the calculated vector to display in the Select Variables dialog for vectors. This dialog appears when you toggle-on the vector layer for the first time; you can also open the dialog by going to Plot > Vector > Variables in the menu bar. To display the "Grid K Unit Normal (vector)" normal, choose the three components “X Grid K Unit Normal”, “Y Grid K Unit Normal”, and “Z Grid K Unit Normal” for the X, Y, and Z components of the vector layer, respectively.

Lastly, click the Zone Style button in the Plot sidebar to open the Zone Style dialog. In that dialog, switch to the Points page, and choose “Cell Centers Near Surfaces” from the Points to Plot menu.

If you wish to display normal vectors on a plot that does not have an identifiable plane to use, choose “Extract” from the Data menu, and choose "FE-Boundary". In the Extract FE-Boundary dialog, extract a boundary zone from a source zone. You can then use the extracted zone to display the normal vectors.

21 - 7 Performing Integrations

Tecplot 360 EX provides a flexible integration feature. You can integrate scalar dataset variables as well as vector variables dotted with grid unit normal or unit tangential vectors, and you can integrate by zone in a single time step, or by time strand. Tecplot 360 EX also has several pre-defined integrations, such as mass flux, which simplify the integration process. In ordered zones, you can integrate these quantities over cell volumes, face areas, or lines. In finite element zones, you can integrate over cell volumes. In addition, you can calculate lift, drag, side force and moments due to pressure and viscous forces acting on a surface or a set of surfaces.

The Integration feature refers to cell volumes in its user interface. In 2D or 1D zones, the cell area or length, respectively, is used in place of the volume.
The results of the integration may be displayed in a text window (and subsequently saved to a text file), or plotted in a frame. In the latter case, the solution time of the integration plot's frame is linked to the original frame's solution time and a marker gridline is displayed on the integration plot to indicate the time step. All of these features are accessed via the Integrate dialog (accessed via Analyze>Perform Integration).

Integrations of a variable or variable function use the trapezoidal method, and are second-order accurate. For each segment, face, or volume cell, the appropriate nodal or cell-centered values are averaged and multiplied by the cell length, area or volume. The calculation sums the resulting quantities over the zone or specified subset to produce the integrated result.

The Integrate dialog is displayed by selecting Perform Integration from the Analyze menu.

The resulting dialog provides options to specify the zone(s) of integration, the variable to be integrated, the domain of integration and display methods.

- **Type of Integration** - Tecplot 360 EX can perform simple, path, surface, and volume integrals. Refer to Integrate Over to see how to select these using the current plot type. Tecplot 360 EX defines the following fourteen integration types:
 - **Length/area/volume** - The physical size of the integration domain.
 - **Scalar** - The integral of a single variable.
 - **Average** - The area or volume-weighted average of a single variable over the domain.
 - **Mass weighted scalar** - The integral of a single variable multiplied by density.

Many of these calculations are affected by settings in the Fluid Properties dialog (see Section 21 - 1 “Specifying Fluid Properties”), the Reference Values and Field Variables dialog (see Section 21 - 3 “Identifying Field Variables”) and the Geometry and Boundaries dialog (see Section 21 - 4 “Setting Geometry and Boundary Options”).
Performing Integrations

- **Mass weighted average** - The weighted average of a single variable, with density as the weighting function.
- **Weighted average** - A general weighted average—both the variable and the weighting function are specified.
- **Scalar flow rate** - The convection of a scalar through a surface. It is calculated by integrating the dot product of the flow velocity and the surface unit normal multiplied by the scalar variable.
- **Mass flow rate** - The convection of density through a surface. This is calculated by integrating the dot product of the flow velocity and the surface unit normal multiplied by the density.
- **Mass weighted flow rate** - The convection of a scalar multiplied by density through a surface. This is calculated by integrating the dot product of the flow velocity and the surface unit normal multiplied by the scalar variable and density.
- **Mass flow weighted average** - The weighted average of a scalar variable on a surface. Here the weighting function is the dot product of the flow momentum vector (velocity multiplied by density) and the surface unit normal.
- **Forces and moments** - The integral of pressure and viscous stresses on a surface. The Forces and Moments option integrates pressure and shear stresses over lines (2D) and planes (3D). Pressure is assumed to act in the opposite direction of the unit normals. These are calculated by integrating the dot product of the stress tensor and the surface unit normal. This will correctly calculate lift and drag if, for example, you have a 2D airfoil defined by the J=1 line and you integrate forces and moments over J-lines (or J-planes) for J=1.

For proper calculation of viscous forces, make sure you have set the value of viscosity in the Fluid Properties dialog. (See "Specifying Fluid Properties" on page 335.) If your flow is inviscid, you should exclude viscous forces from the integration by setting viscosity to zero.

Forces and Moments are calculated as six quantities: X, Y and Z-Force and X, Y and Z-moments about the origin. For backward compatibility, the forces are also displayed as Lift, Drag and Side force. Lift and Drag are the forces rotated in the XY-plane such that Lift is normal to the reference flow direction (specified on the Reference Values dialog) and Drag is parallel to it. Side force is equal to Z-Force.

If an I-ordered zone (in 2D) or a surface zone (in 3D) has been defined as a boundary to a surface (2D) or volume (3D) zone, then you can perform a Forces and Moments integration over this boundary zone. Tecplot 360 EX takes the shear stress and unit normal direction from the associated zone. This allows you, for example, to perform Forces and Moments integrations for finite element solutions, provided you have a line or surface zone that defines the surface, and you have identified this zone as a boundary zone in the Geometry and Boundaries dialog.
- **Vector-dot-normal** - The integral over a surface of a vector dotted with the surface unit normals. Here the components of the vector are dataset variables.
- **Vector average** - The weighted average of a scalar variable on a surface. The weighting function is the dot product of a vector with the surface unit normal. Both the scalar and the vector components are dataset variables.
• Vector-dot-tangential - The integral on a line of a specified vector dotted with the line unit tangential vector. Options that involve a unit normal must be integrated over a domain where the unit normal direction can be determined. Acceptable domains include lines in 2D or planes in 3D, as well as triangular or quadrilateral zones in 3D. The vector-dot-tangential options can only be integrated over lines. Unit normals are discussed further in Section 21 - 6.6 “Surface Normal Calculations”.

If you have selected the 2D Cartesian plot type and have specified that the geometry is axisymmetric, an axisymmetric integration will be performed. Tecplot 360 EX multiplies each grid segment’s or cell’s contribution to the integration by \(\pi r \), where \(r \) is the distance from the centroid of the segment or cell to the axis of symmetry.

Integrations involving surface unit normals, such as Mass Flow Rate and Forces and Moments integration, rely on surface unit normals pointing in a consistent direction (that is, toward the same side of the surface zone). This is guaranteed for ordered surface zones, but not for finite element surface zones (triangular, quadrilateral, or polygonal), including extracted slices. For these zones, the surface unit normal direction for each face is calculated using the right-hand rule with the node order for the face. If the nodes for some faces progress clockwise around the face while other faces’ nodes progress counter-clockwise (as defined by the zone’s connectivity), the faces’ surface normals will point in inconsistent directions, and any integration that relies on these normals will not produce meaningful results. You can check for this condition using the technique for visualizing surface unit normals described in Section 21 - 6.6 “Surface Normal Calculations”.

Similarly, an integration that sums results from multiple surface zones may not be meaningful because the normals from one zone may be inconsistent with the normals of some other zone.

• Integrant - Some of the available types of integrations require you to choose variables from your dataset to be integrated. Where required, fields in the Integrant section of the dialog will be enabled. You may type in the variable names, or click Select to choose variables. For Forces and Moments integrations, pressure and the components of velocity are calculated from the field variables identified on the Field Variables dialog.

• Specifying the Domain of Integration - The domain of integration is defined by zone or time strand numbers and index ranges. For ordered zones, you may choose whether to integrate over lines, planes, or volumes. You may also choose to use the absolute value of calculated volumes, which can be useful for finite element zones where the node ordering may result in erroneous calculations. Finally, you can choose to exclude regions not displayed due to index or value blanking. Please refer to Chapter 19: “Blanking” for more information on blanking.

• Integrate By

The Integrate By drop-down menu lets you specify whether to integrate over specific zones or specific time strands.

• Integrate Over

The Over drop-down menu allows you to specify cells, planes of constant I, J, or K, or lines of varying I, J, or K. For tetrahedral and brick finite element zones, only volume integration is allowed. For quadrilateral and triangular finite element zones, only K-planes are allowed (selecting Cells for these zones is equivalent to selecting K-planes, since they are logically 2D).

For 2D and 3D Cartesian plot types, integrations over lines are performed as path integrals and integrals over planes are performed as surface integrals. Integrals in XY line plots integrate the chosen variable along the X axis to calculate the area between the curve and the X axis. Volume integrations should be done in 3D Cartesian plots—volume integrations in 2D Cartesian plots will give zero results.
Performing Integrations

If a vector dot product is to be integrated, then the domain must have an identifiable normal or tangential direction. In 3D Cartesian plots, this usually means I, J, or K-planes will be selected. The normals in these cases will point in the +I, +J, and +K-directions, respectively, or the reverse for a left-handed grid. I, J, and K-planes do not have an identifiable tangential direction, so vector-dot-tangential integration over planes generates an error.

If I, J, or K-Lines are selected, the tangential vectors point in the positive-index direction. Vector-dot-normal integration is also available, but may not be meaningful—the normal is calculated by taking the cross-product of the tangential and the +Z-axis.

In 2D Cartesian plots, I-planes are equivalent to J-lines, J-planes is equivalent to I-lines, and K-planes is equivalent to cells. (It may be better to ignore planes in two dimensions.) Both normal and tangential directions are available in all cases. However, the normal to K-planes points in the third dimension; it may not be meaningful.

For quadrilateral and triangular finite element zones, the normal direction is found with the right-hand rule—if the fingers of the right hand are curled in the direction of a line drawn from cell node 1 to node 2, thence to node 3, then the thumb will point in the direction of the normal.

• Zones/Time Strands - Depending on whether you have chosen to integrate by zones or by time strands, this text field allows you to specify which zones or time strands the variable will be integrated over. You may enter a single zone or strand, a range with a hyphen (for example, 3-5), or a combination of these, separated by commas (,). For convenience, the [All] button will set this text field to indicate all zones or time strands. The [Active] button will list all zones or time strands currently active. You may also select items from a list by clicking Select, which calls up a separate selection dialog.

• Specifying Index Ranges - Below the Zone or Time Step field are I, J, and K-index ranges. These ranges will be applied to each zone over which the integration is performed. The three comma separated items in each index range indicate the starting index, the ending index and the skip factor, respectively.

For finite element zones, only the J-index settings have effect. These indicate the range of cells over which the integration will be performed. For reasons discussed below, a skip factor of 1 is probably desirable for these cases.

To enter or change an index range, select the button over the desired range's text field. The Enter Range dialog will be displayed.

Enter the starting index in the Begin field, the ending index in the End field, and the skip factor in the Skip field.

You have two options for entries into the End field. You can enter a number, in which case the maximum allowable value is displayed at the top of this dialog, and indicates the smallest size of the given index for all of the zones listed on the Integrate dialog. Alternatively, you can enter “Mx” to use the maximum index for each individual zone, “Mx - 1” to use one less than the maximum and so on. A skip factor of 1 means “use every point in the range,” a skip of two means, “use every other point”, and so forth.
For linear and planar integration, skip factors are ignored along the line, or within the plane of integration. For example, if you are integrating along I-lines, the I-skip factor will be ignored. If you are integrating along an IJ-plane (for example), both I- and J- skip factors are ignored. For volume cells, all skip factors are ignored. Minimum and maximum index values are always used.

- **Time Min/Max** - When integrating by time strands, these fields appear to the right of the Index Range, allowing you to specify the starting and ending time steps for the integration. Click the Reset Min/Max button to set these fields to the first and last time steps in your data set, respectively.

- **Use Absolute Values of Volume** - Takes the absolute value of the volumes of 3D grid cells used for integration. This is useful if you have a finite element grid with arbitrary node ordering such that the calculated volume of cells may be positive or negative. Negative grid cell volumes occur when left-handed grids are used in Tecplot 360 EX. A right-handed ordered zone will have the +J-direction proceeding to the left of the +I-direction when viewed from the +K-direction. For finite element zones, the nodes of each cell will proceed counter-clockwise when viewed from the direction of the highest-numbered node.

- **Exclude Blanked Regions** - Removes from the integration domain portions of any zones that are hidden due to value or index-blanking. (Note that 3D depth blanking has no effect.) Excluding blanked regions can lead to unexpected results, depending on the blanking settings. In particular, note that blanking options allow for a cell to be blanked when any of its nodes is blanked, when its “primary” (or lowest-numbered) index is blanked, or only when all of its nodes are blanked. As a result, cells may still be displayed where some nodes have been blanked. Figure 21-11 illustrates this effect. Index-blanking has been used to blank all nodes along the J=1 line, but all cells are still displayed. An integration over volumes or K-planes would include the entire mesh, while integrations over I-lines or J-lines would exclude the J=1 line. In general, display the Mesh layer to see the domain of integration if you are integrating over volumes in 3D or planes in 2D, and display the Scatter layer to see the remaining types of integration domain. See Chapter 19: “Blanking” for more information on blanking.

![Figure 21-11](image)

Figure 21-11. The effect of blanking on nodes and cells.

- **Performing the Integration** - Selecting Integrate at the bottom of the Integrate dialog will perform the integration and display the results. Tecplot 360 EX uses the trapezoidal method, a second-order method which averages nodal values to cell, face, or edge centers, then sums the products of these values with the corresponding cell volumes, areas, or lengths.
21 - 7.1 Specifying Display Options

Displaying Tabulated Results
You can display the results of an integration in a text dialog, plotted, or both. The options at the bottom of the Integrate dialog (accessed via Analyze>Perform Integration) control these settings. When you have “Show Tabulated Results” toggled-on, integration results will appear in a text dialog, as shown below.

This dialog presents two additional options. Selecting the [Save] button displays a file selection dialog which allows you to save the integration results to a text file. The [Make Text] button places a text field containing the results into the active frame. Make sure you have the frame in which you wish to place the results selected as the active frame before you select this button.

Plotting Results
Setting the Plot Results As check box results in the integration results being plotted in a new frame. Each zone or time strand used in the integration results in a corresponding zone being created in this frame. For Cell integrations, the plot will not be useful, because it will contain only a single point in each zone. For plane (in 3D) or line integrations where multiple planes or lines are integrated in each zone or time strand, plotting can be very useful. In these cases, the results for each plane or line are plotted versus the corresponding index or indices.

When integrating by time strand, a new variable called “Solution Time” will be generated and plotted as the independent variable. Integration results for co-relevant zones are summed to a single point for each solution time. If no relevant zones exist at a given solution time, the integration is zero at that time step.

For all integrations except Forces and Moments, the text field to the right of the Plot Results As check box may be used to name the variable used to hold the integration results in the results plot. For Forces and Moments, the nine variable names will be Lift, Drag, Side, X-Moment, Y-Moment, Z-Moment, X-Force, Y-Force, and Z-Force, with Lift initially being the only variable displayed.

Because the plotting feature creates a new frame, it cannot be saved to the data journal, and the current data journal is invalidated. If you subsequently save a layout file, you will be prompted to save a new data file.
21 - 7.2 Accessing Integration Results in Macros

Macro commands may access the results of the most recent integration through specific environment variables. Each of these variables represents the total over all zones (the final number shown in the Integration Results dialog). For all integration types except Forces and Moments, the single result is stored in the variable INTEGRATION_TOTAL. Table 21-1 shows the variable names for forces and moments.

<table>
<thead>
<tr>
<th>Integration Types</th>
<th>Environment Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forc and Moments</td>
<td>INTEGRATION_LIFT</td>
</tr>
<tr>
<td></td>
<td>INTEGRATION_DRAG</td>
</tr>
<tr>
<td></td>
<td>INTEGRATION_SIDE</td>
</tr>
<tr>
<td></td>
<td>INTEGRATION_VMOMENT</td>
</tr>
<tr>
<td></td>
<td>INTEGRATION_V2MOMENT</td>
</tr>
<tr>
<td></td>
<td>INTEGRATION_XFORCE</td>
</tr>
<tr>
<td></td>
<td>INTEGRATION_YFORCE</td>
</tr>
<tr>
<td>All other types</td>
<td>INTEGRATION_TOTAL</td>
</tr>
</tbody>
</table>

Table 21 - 1: Environment variables for integration results.

Environment variables are accessed in macros in the same way as regular macro variables, except that a $ is prefixed to the variable name. For example, the following macro command would display the result of the most recent scalar integration:

```plaintext
$!PAUSE "Integration total = |$INTEGRATION_TOTAL|
```

You can also access integration results as frame auxiliary data. For example, to access the INTEGRATION_TOTAL variable as aux data, use the following syntax:

```plaintext
INTEGRATION_TOTAL = &{AUXFRAME:CFDA_INTEGRATION_TOTAL}
```

21 - 7.3 Integration Examples

The following sections demonstrate potential uses of the Integrate dialog.

Calculating the Volume Under a Surface

Figure 21-12 shows a 3D surface. We want to calculate the volume between that surface and the Z=0 plane. To do this, integrate Z over the projection of the surface onto the Z=0 plane. To get this projection, switch to 2D Cartesian plot type. Ensure that the same variables used for X and Y in 3D are used for X and Y in 2D using the Assign XYZ dialog (available in the Plot menu).

Figure 21-12. A 3D surface.
Performing Integrations

To set up the **Integrate** dialog to perform the integration, choose Scalar as the integration type and Z as the scalar variable. The remaining controls are left at their default settings. Selecting Integrate displays the volume under the surface. The **Integrate** dialog and the results are shown in Figure 21-13.

![Integrate dialog and integration results](image)

Figure 21-13. The Integration dialog and the integration results for calculating the volume under the surface shown in Figure 21-12.

Internal Flow Examples

The next few examples will demonstrate some uses of the **Integrate** dialog for internal flows, such as flow through a jet engine or a pipe. Our dataset consists of a single I-J ordered zone. It is shown with the mesh and contours of pressure in Figure 21-14.

![Internal flow solution](image)

Figure 21-14. An internal flow solution.

Calculating Total Mass

To calculate the total mass we must integrate density over volume (or area in 2D). If your dataset does not contain density, it may be determined using the **Calculate** dialog. (See Section 21 - 6 “Calculating Variables”) Select the Scalar Integral integration type, choose the density variable as the scalar, then integrate over Cells (which is demoted to K-planes for our IJ-ordered data). When we click Integrate, the
total mass appears as the result of the integration. The Integrate dialog and the results are shown in Figure 21-15.

![Figure 21-15. The Integration dialog and the integration results for calculating the volume under the surface shown in Figure 21-14.](image)

Calculating Mass Flow Rate

To calculate mass flow rate, you must first set your convective variables in the Field Variables dialog. See Section 21 - 3.1 "Choosing the Convective Variables" for information on setting these variables.

We will now calculate the mass flow rate at various stations in the streamwise direction. This will give us an indication of how well converged our solution is to steady-state. The Integrate dialog makes this easy with the Mass Flow Rate integration type. We select this option and specify integration over J-lines (which is equivalent to I-planes in 2D). Note that the entire Integrand section of the dialog is disabled. Tecplot 360 EX calculates the necessary variable (momentum) from information entered in the Fluid Properties and the Field Variables dialogs.

We only wish to plot the results, so we select this option at the bottom of the Integrate dialog, specifying that the result be named “Mass Flow.” When we select Integrate, the mass flow rate is plotted versus I-
Performing Integrations

index in a new frame. The Integrate dialog and the plotted results are shown in Figure 21-16. From the results, we see that our solution was not fully converged.

![Integrate dialog and plotted results](image)

Figure 21-16. The Integration dialog and the results of calculating the mass flow rate of the object in Figure 21-14.

Calculating Mass-weighted Stagnation Pressure

We will now calculate a quantity commonly used in engine analysis, the mass-weighted stagnation (or total) pressure. Although it is referred to as “mass-weighted,” the weighting function is actually the mass flow rate. Accordingly, select Mass Flow-weighted Average for the integration type, choosing the Stagnation Pressure variable from our dataset (previously calculated with the Calculate dialog). Since we are only interested in this value at the exit plane, we again select J-lines (from the “Integrate Over” drop-down menu), but now specify an I-range of (Mx, Mx, 1) to integrate only the I=IMax plane. We choose only to display the result in a text dialog. Select [Integrate] to perform the calculation. The Integrate dialog and the result are shown in Figure 21-17.

![Integrate dialog and result](image)
Circulation in a Vortex Core

If you can define a closed path in your data over which to integrate, you can calculate circulation using integration. In the Integrate dialog, for Type of Integration, select Vector Dotted with Unit Tangential, and select your velocity components for the Integrand. You then need to identify a line—a closed path—as your Domain of Integration. Click Integrate to display circulation.

Calculating Lift and Drag

Our final example makes use of a three-element airfoil solution, an example of an external flow solution. Our data consists of four zones. Three zones are D-ordered zones which capture the Edge layer about each of the elements. The fourth zone is a triangular finite element zone that fills the remaining airspace about the elements. Pressure contours and streamtraces of this solution are shown in Figure 21-18.

To calculate lift and drag for this airfoil configuration we use the Forces and Moments integration type. As with Mass Flow Rate, the entire Integrand portion of the Integrate dialog is disabled, because Tecplot 360 EX will derive the required values (pressure, velocity gradient, and viscosity) from settings in other dialogs. We choose integrate over the surface (J=1) line for each of the three Edge layer zones, the click Integrate. The Integrate dialog and results appears as in Figure 21-19.
Calculating Turbulence Functions

Figure 21-19. The Integration dialog and the integration results for calculating the lift and drag for the data shown in Figure 21-18.

The results of each zone are listed separately. Scrolling to the bottom of the Integration Results dialog, we see the total lift and drag, along with other force and moment data.

Specifying the Origin for Moments

When the Forces and Moments integration type is selected, the [Set Origin] button is active. Selecting this button displays the Set Origin dialog. In this dialog, you may specify the X, Y, Z-location of the origin about which the moments will be calculated.

Select Zones

To select zones, choose [All], [Active], or [Select] from the Domain of Integration portion of the Integrate dialog. By choosing [Select], you may select the zones you want by clicking in the list, or by selecting [Zone Number] or [Zone Name] in the resultant Select Zones dialog. Selecting [Zone Number] calls up the Enter Range dialog, allowing you to indicate the desired zones by a numeric range. Selecting [Zone Name] prompts you for a pattern string, which is matched against the names of all zones. You may use the asterisk as a wildcard when entering the zone name pattern. All zones whose names match the pattern are then selected in the list.

21 - 8 Calculating Turbulence Functions

Tecplot 360 EX allows you to calculate and add to your dataset any of four turbulence-related quantities, provided you already have any given two in your dataset. Turbulent kinetic energy, dissipation rate, frequency and kinematic viscosity, and dynamic viscosity are available via the Turbulence dialog.

The Turbulence dialog is displayed by selecting Calculate Turbulence Functions from the Analyze menu.

It contains two drop-down menus and associated text fields for you to identify the two turbulence-related variables in your dataset, drop-downs for you to select the function you wish to calculate and the location of the calculated variable, a toggle to select calculate-on-demand, and a [Calculate] button to perform the calculation.
21 - 8.1 Identifying Turbulence Variables
The first two drop-down menus on the Turbulence dialog allow you to specify which turbulence variables are contained in your dataset. The options are Kinetic Energy \((\kappa) \), Dissipation Rate \((\varepsilon) \), Turbulent Frequency \((\omega) \), Turbulent Kinematic Viscosity \((\nu_t) \), and Turbulent Dynamic Viscosity \((\mu_t) \). This last option is the kinematic viscosity, which is equal to the dynamic viscosity divided by the density.

21 - 8.2 Selecting the Variable Location
You may select the location (nodal or cell-centered) of new variables Tecplot 360 EX creates during a calculation with the New Var Location dropdown. This setting only affects new variables added to the dataset when you click Calculate. Variables that already exist in the dataset keep their existing locations. If you wish to change the location of an existing variable, you can delete or rename the variable and then perform the calculation with the desired setting for New Var Location.

21 - 8.3 Calculating on Demand
Selecting the Calculate on Demand option results in the calculated variable being added to the dataset when you click the [Calculate] button, but the actual calculation is delayed until it is actually needed. Please refer to the discussion of calculate-on-demand in Section 21 - 6 “Calculating Variables.”

21 - 8.4 Performing the Calculation
Once you have identified two turbulence variables in your dataset, you may calculate either of the other two. Select the desired function from the Function drop-down menu and click [Calculate]. The function is calculated and added to your dataset as a variable with the same name as the function selected. If your dataset variables are \(k \) and \(\varepsilon \), the following formulae will be used for the calculations of \(\omega \) and \(\nu_t \):

\[
\frac{\omega}{C_p k} = \frac{\nu_t}{C_p k^2} = \frac{\kappa}{C_p \varepsilon}
\]

with \(C_p = 0.09 \). Equations for other input variables are derived from these.

21 - 8.5 Shared Variables
If both variables from which the turbulence function is calculated are shared between multiple zones, and they and the calculated variable are all at the same location (cell-centered or nodal), the new variable will be shared as well. This mimics the behavior of the Data>Alter>Specify Equations dialog.

21 - 9 Calculating Particle Paths and Streaklines
For steady-state solutions, Tecplot 360 EX allows you to track the paths of massless particles by placing streamtraces in the flow. The Particle Paths and Streaklines dialog augments this capability by providing two additional visualization methods, particle paths and streaklines, for particles with or without mass. Please note that these calculations, particularly for streaklines, may be very lengthy to perform, especially for cases with large grids.
Calculating Particle Paths and Streaklines

The Particle Paths and Streaklines dialog is displayed by selecting Calculate Particle Paths and Streaklines from the Analyze menu.

It contains a drop-down menu allowing you to choose particle paths or streaklines, as well as options pertaining to the path integrations, particles with mass, storage and display of the calculated particle paths. In addition, the results of streaklines may be animated.

21 - 9.1 Calculating Particle Paths

A particle path is the path that a single particle follows through a solution. In steady flow, particle paths are the same as streaklines and streamtraces for massless particles. To calculate particle paths, you must:

1. Place streamtraces at the locations where you wish particles to be released, then select Particle Paths from the drop-down menu at the top of the dialog. (Details on placing streamtraces may be found in the Chapter 15: “Streamtraces.”)

2. Specify an integration time step. For steady-state calculations, specify the maximum number of time steps to be performed (see Section 21 - 5 “Unsteady Flow” for specifying steady or unsteady flow).

3. Set the Particles Have Mass option for particles with mass. Click Mass Options to set mass-related options.

4. Optionally, set the Create Single Ordered Zone From Particle Paths toggle to create a single IJ-ordered zone from all particle paths instead of a separate I-ordered zone from each path.

5. Select [Calculate].

Specifying the Integration Time Step and Maximum Number of Steps

Particle Paths are calculated by integrating the velocity field of your solution using a constant time step, which you enter in the Integration Time Step text field. A smaller time step will result in more accurate particle paths but will take longer to calculate. For unsteady calculations, the time step is set equal to the time interval between your solution time levels by default. If you specify so large a time step that a particle passes out of your solution domain in the first integration time step, you will get a warning message.

If you have set the Flow Solution is Steady-state option, you must also enter the maximum number of integration time steps to be performed (see also Section 21 - 5 “Unsteady Flow” on page 345).
Specifying Mass-Related Options

For particles with mass, set the Particles Have Mass option. This enables other mass-related controls in the dialog. Click Mass Options to display the Particle Mass Options dialog. (See Section 21 - 9.3 “Particles with Mass”) In addition, you have the option of storing the particle's velocity and other particle properties or the local flow properties along the calculated particle path. Select Store Particle Velocity, Temperature, and Mass to store these values along the particle path. Select Store Interpolated Solution Variables to store these values instead. Following the calculation, you will be informed of which dataset variables contain these values.

Performing the Particle Path Calculation

When you select Calculate, a particle is placed at the starting point for each streamtrace you have placed. If you did not place any streamtraces, you will get an error message. From these starting locations, beginning with the time equal to the time of your first solution time level (or zero for steady-state calculations), the particle positions are advanced by performing a second-order Runge-Kutta integration of the velocity field. For unsteady calculations, linear interpolation is performed between solution time levels. Integration for each particle is continued until the final time level is reached (unsteady calculations), the specified number of time steps has been performed (steady-state calculations), or until the particle passes out of your solution domain. The particle paths are displayed as new I-ordered zones in your dataset, with each integration step represented by a node in the new zones, unless you selected the Create Single Zone From Particle Paths option, which results in a single IJ-ordered zone.

Examining the Particle Paths

Each I-ordered zone created by a Particle Path calculation represents a path through space and time. The paths' non-grid variables will hold interpolated values of your solution data that the particle "saw" as it passed through your solution, except as discussed in Specifying Mass-Related Options. You can visualize this by coloring the particle zones' mesh plots with one of your solution variables. The following steps will accomplish this:

1. Turn on the Mesh plot layer by toggling-on the Mesh in the Plot sidebar.
2. Call up the Zone Style dialog (accessed via the Plot menu or the Plot sidebar).
3. Turn off mesh plotting for your solution zones by selecting the solution zones, clicking Mesh Show and selecting No.
4. If necessary, turn on mesh plotting for the Particle Path zones by selecting them, clicking Mesh Show and selecting Yes.
5. Color the Particle Path zones with a variable by selecting these zones, clicking Mesh Color and selecting Multi-color. If you had not previously chosen a contour variable, the Contour Variable dialog will open to allow you to select it. Choose the variable you wish to use to color the particle paths.
6. If Auto Redraw has not been selected, click Redraw to redraw your plot. You will see the particle paths displayed and colored with the contour variable.

You may wish to turn on the Scatter plot layer to see the size of these steps. If you do this, you will first want to turn off scatter plotting for your solution zones. You can also do this with the Zone Style dialog.

21 - 9.2 Calculating Streaklines

Streaklines simulate experimental techniques which involve the periodic or continuous release of a tracer substance, such as oil drops or smoke. Tecplot 360 EX produces streaklines by releasing a sequence of particles from the release points and integrating the unsteady velocity field to find their positions in the flow at the end solution time. The final positions of all particles emitted from a particular release point form one streakline. Once streaklines have been calculated, they may be animated on screen or to a file.
To calculate Streaklines, perform the following actions:

1. Identify the solution time levels in your dataset. (See Section 21 - 5 "Unsteady Flow").
2. Place streamtraces at the locations where you wish particles to be released.
3. Select Streaklines from the drop-down menu at the top of the Particle Paths and Streaklines dialog.
4. Enter the integration time step as with particle path calculations. (See Specifying the Integration Time Step and Maximum Number of Steps).
5. Specify the particle release frequency. (See Specifying the Particle Release Frequency.)
6. For particles with mass, set the Particles Have Mass option. Click Mass Options to set mass-related options.
7. Select [Calculate].

It is not reasonable to calculate streaklines for steady-state flow, because in steady-state flow, even for particles with mass, streaklines are the same as particle paths (just more time consuming to compute).

Specifying the Particle Release Frequency

For Streakline calculations, a sequence of particles is released throughout the solution time. Each particle's position is integrated using the specified integration time step. The frequency with which particles are released is specified by the controls just above the [Calculate] button. In the Release text field, enter the number of particles to be released in the specified time interval. In the particles per drop-down menu, identify this time interval by selecting either Solution Time Level or Unit Solution Time.

If you select Solution Time Level, the indicated number of particles will be released, evenly spaced in time, between each pair of solution time levels you have identified. If you select Unit Solution Time, the particles will be released at regular intervals throughout the time covered by your solution. In either case, a particle will be released at the final time of your solution, so that the streaklines will include the release points themselves. Releasing particles more frequently will produce more detailed streaklines (the accuracy is determined by the Integration Time Step), but will take longer to calculate.

Performing the Streakline Calculation

When you click Calculate, the streaklines are calculated and added to your dataset as new I-ordered zones. To see them, turn on the Mesh plot layer and disable mesh plotting for your solution zones. See Examining the Particle Paths.

Animating Streaklines

Once you have performed a streakline calculation, the animation controls of the Particle Paths and Streaklines dialog are enabled. A streakline animation displays each successive step in the integration, and can be an effective means of visualizing the unsteadiness of a flow. Toggle-on Include Zone Animation in the Particle Paths and Streaklines dialog to animate the zones along with the streaklines.

Please note that subsequent particle path or streakline calculations will replace the current streakline calculation, making it unavailable for animation.

You may display the animation in the frame in which the streaklines were calculated or save it to a video file in a number of formats. To perform a streakline animation, perform the following steps:

1. Delete the I-ordered zones of any streaklines you do not wish to be part of the animation using Data/Delete Zone.
2. Select the animation destination from the Animate Streaklines dropdown.
CFD Data Analysis

3. Select Animate.
4. If you chose to save the animation to a file, the Animate Options dialog will be displayed.
Enter your choices for the animation and select [OK]. Then choose a file name in the resulting file selection dialog.

While animating on the screen, the [Animate] button's text will change to Cancel, allowing you to stop the animation. While animating to a file, a progress dialog will be displayed that allows you to cancel the animation.

Deleting Particle Paths and Streaklines

Particle paths and streaklines are saved either as I-ordered zones or as a single IJ-ordered zone. You may delete these individually using the [Delete Zone] dialog (accessed via Data>Delete>Zone). If you wish to delete all previously calculated particle paths and streaklines, you may do so using the [Delete All Particle Paths and Streaklines] button. This deletes all zones whose names begin with 'Particle Path' or 'Streakline.'

Animate Options

The Animation Options dialog allows you to specify options for saving the streakline animation to a file. The following options are available:

- **Width (pixels)** - Enter a value in the text field for your exported image's width. The image region is rendered to the image file to exactly fit a size of Width by Height. This text field initially displays the frame's actual width.
- **Height (pixels)** - Displays the height of the image based on the value entered for Width, preserving the shape of the region to be exported. (Calculated by Tecplot 360 EX.)
- **Animation Speed (frames/sec)** - Applicable only to AVI files. Enter a value in the text field to set your speed in frames per second.
- **Use Multiple Color Tables** - Selecting this check box will create a color table for each frame of the animation. If this check box is not selected, Tecplot 360 EX will scan each frame in your AVI file and create an optimal color table from 256 colors for the entire animation.

21 - 9.3 Particles with Mass

Whereas massless particles always travel with the local fluid velocity, particles with mass travel according to a more complicated equation of motion where the fluid creates drag on the particle. In addition, particles with mass may have a temperature that is different from the local fluid temperature, and they may lose mass due to ablative processes such as vaporization. The Particle Mass Options dialog allows you to enter coefficients and particle properties to indicate how these mass-related effects are calculated.

The Particle Mass Options dialog is displayed by selecting Mass Options on the Particle Paths and Streaklines dialog. It allows you to specify either general or detailed coefficients related to the particle trajectory and heat transfer calculations, plus options related to gravity and the initial particle velocity. If you choose to calculate the particle temperature, you may choose to terminate the particle at a specified temperature, or, with the detailed coefficient option, to ablate the particles until their mass reaches zero.
Selecting a Coefficient Set

You may enter either general coefficients or detailed coefficients. General coefficients are a convenient way of characterizing the particles, but result in less accurate calculations. They should only be used when the particle drag coefficient and heat transfer coefficient (if particle temperature is being calculated) are essentially constant. Detailed coefficients result in more accurate calculations, and should be used whenever the drag coefficient or heat transfer coefficient may not be constant, such as when the particle Reynolds number is less than 1000 (see page 372 for a definition of particle Reynolds number). In addition, if you wish to calculate particle ablation, you must specify detailed coefficients. Indicate your choice of coefficients by making the appropriate selection in the option box at the top of the Particle Mass Options dialog.

Calculating Particle Temperature

If you wish to calculate each particle’s temperature along its path, set the Calculate Particle Temperature option. Particles begin with their temperature equal to the local fluid temperature at their insertion point (the beginning of each streamtrace you have placed). If you have chosen to enter general coefficients, enter the Temperature Time Constant in the General Coefficients section of the dialog. Otherwise, enter the specific heat (per unit mass) and the Nusselt number in the Detailed Coefficients section of the dialog. Also, select from the available options in the Termination Options section of the dialog. All of these options are discussed below.

Specifying the Effects of Gravity and Buoyancy

If you wish to include the effects of gravity in your calculation, enter the value in the gravity field and select the axis direction in which gravity acts.

If you choose the detailed coefficient set and non-zero gravity, the effects of buoyancy will also be included. Buoyancy acts in the opposite direction of gravity. It is included by subtracting from the particle mass the mass of the fluid it displaces, and multiplying the result by the gravitational constant to calculate the force due to gravity.

Buoyancy effects are not included if you choose the general coefficient set because the particle size is not specified. In this case, the value for gravity is simply added to the particle acceleration that is calculated from the general coefficients and local flow conditions.

Specifying the Initial Particle Velocity

Each particle injected into the flow begins either at the velocity of the flow at the point where the particle is injected, or at zero velocity or at a specified velocity. Select one of these options from the drop-down menu and, if you have chosen Specified Velocity, enter the U, V, and W velocities.
General Coefficients

Figure 21-20 shows the Particle Mass Options dialog with the general coefficients displayed. The General Coefficients consist of the Ballistic Coefficient and, if you are calculating particle temperature, the Temperature Time Constant.

Ballistic Coefficient.

The Ballistic Coefficient is defined by the following:

\[B = \frac{m_P}{S C_D} \]

where \(B \) is the Ballistic Coefficient, \(S \) is the frontal area of the particle, \(C_D \) is the particle's drag coefficient and \(m_P \) is the particle's mass. Given the Ballistic Coefficient, the acceleration of a particle due to fluid drag is calculated from

\[a_i = \frac{0.5 \rho_f (u_i - u_f)}{B} \left(u_i - u_f \right) \]

where \(a \) is particle acceleration, \(i \) stands for each spatial dimension, \(\rho_f \) is the local fluid density and \(u_f \) and \(u_p \) are the velocity components of the fluid and the particle. If non-zero gravity has been specified, the acceleration in the specified direction is augmented by the value for gravity. For example, if a gravitational constant, \(g_c \), acts in the \(-Z\) direction, the acceleration in the \(Z \) direction becomes:

\[a_z = \frac{0.5 \rho_f (u_z - u_f)}{B} \left(u_z - u_f \right) + g_c \]
Calculating Particle Paths and Streaklines

Temperature Time Constant

For the general coefficient option, particle temperature is calculated with a simple relaxation:

\[
\frac{dT}{dT} = \frac{1}{\tau_T} (T_f - T_p)
\]

where \(T \) is temperature, and \(\tau_T \) is the Temperature Time Constant you enter in this text field. \(\tau_T \) has units of time, and indicates the “e-folding” time of this relaxation—the amount of time it takes to reduce the difference between the fluid temperature and the particle temperature by a factor of about 2.7.

Comparing with the convective heat transfer equation,

\[
Q = h A (T_f - T_p) = -m \frac{dT_p}{dt}
\]

we see that \(\tau_T \) may be thought of as a combination of the convective heat transfer coefficient, \(h \) and the surface area, mass, and specific heat of the particle:

\[
\tau_T = \frac{\pi r_p^2 h}{m c_p}
\]

Note from that the Temperature Time Constant is only constant if the heat transfer coefficient is also constant. In general, however, this coefficient will vary with the particle's velocity relative to the fluid, so this approximation should be viewed with skepticism.

Detailed Coefficients

Figure 21-21 shows the Particle Mass Options dialog with detailed coefficients displayed. The detailed coefficients consist of particle mass radius and drag coefficient. In addition, if particle temperature is being calculated, the detailed coefficients consist of particle specific heat and Nusselt number.
Figure 21-21. The Particle Mass Options dialog with detailed coefficients.

- **Mass** - Each particle begins with the same mass, entered in this text field. If ablation is being calculated, the particle’s mass may be reduced by the ablative process as it travels through the flow field.
- **Radius** - As with Mass, each particle begins with the same radius, entered in this text field and may be reduced by ablation.
- **Specify/Calculate Drag Coefficient** - You may elect to specify a constant drag coefficient or have Tecplot 360 EX calculate it. If you specify a constant drag coefficient, enter its value in the corresponding text field. For calculated drag coefficient, Tecplot 360 EX uses a formula from *Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions* (D. Gidaspow, 1994):
 \[
 C_D = \frac{24}{Re} \left(1 + 0.15(Re)^{0.447}\right) \quad Re < 1000 \\
 0.44 \quad Re \geq 1000
 \]
 with the particle Reynolds number:
 \[
 Re = \frac{4d_p u}{\mu_f}
 \]
 where \(d_p\) is the particle diameter, \(u\) is the speed of the particle relative to the fluid and \(\mu_f\) is the dynamic viscosity of the gas. The acceleration then becomes:
 \[
 a_i = \frac{F_i}{m_p} = \frac{2\tau_f\rho (u_i - u_f) \left\| u_i - u_f \right\| C_D}{m_p}
 \]
 If non-zero gravity has been specified, the acceleration in the specified direction is augmented by the gravitational constant adjusted for buoyancy. For example, if a gravitational constant, \(g_\text{c}\), acts in the \(Z\) direction, the acceleration in the \(Z\) direction becomes:
 \[
 a_z = \frac{2\tau_f\rho (u_i - u_f) \left\| u_i - u_f \right\| C_D}{m_p} - g_c \left(1 - \frac{\rho_p}{\rho_f}\right)
 \]
 where \(\rho_p\) is the density of the particle.
- **Specific Heat** - If particle temperature is being calculated, enter the specific heat per unit mass of the particles, in units of energy per mass per degree.
- **Specify/Calculate Nusselt Number** - The Nusselt number is a non-dimensional measure of heat transfer. The temperature change of the particle is calculated from this number using the following formula:
 \[
 \frac{dT_p}{dt} = -\frac{Q}{m_p c_p} = \frac{2\pi r_b k_u (T_f - T_p)}{m_p c_p} \]
 where \(k_u\) is the conductivity of the fluid.
 If you specify a constant Nusselt number, enter its value in the text field. Otherwise, Tecplot 360 EX will calculate it using a formula from *An Eulerian-Lagrangian Analysis for Rocket Motor Internal Flows* (Jayant S. Sabnis, et al., 1989):
 \[
 Nu = 2 + 0.53(Re)^{0.3} \quad Re \leq 278.92 \\
 0.37(Re)^{0.8} \quad Re > 278.92
 \]
Termination Options

When solving for particle temperature, you may terminate particles when they reach a specified temperature, or calculate particle ablation (mass reduction due to off-gassing or some sort of sloughing of material from the particle).

- **Terminate/Ablate Particles** - If you elect to terminate the particles at a particular temperature, you must enter the temperature. When the particle reaches this temperature, its path will be terminated at that location. If you elect ablation, you must enter the temperature at which ablation begins, and the latent heat of the ablative process. If you wish to model boiling of initially solid particles, enter the latent heat of fusion plus the latent heat of vaporization, as a positive number. Once the particle reaches the specified temperature, any additional heat transferred to the particle will result in ablation instead of an additional temperature rise. If the particle's mass reaches zero, it will be terminated at that location.

- **Temperature** - For temperature-based termination, this is the temperature in absolute units at which the particle will be terminated. For ablation, this is the temperature at which the ablation begins.

- **Latent Heat** - This is the combined latent heat of fusion and vaporization for the particle, used only for particle ablation. Its units are energy per unit mass.

21 - 10 Analyzing Solution Error

Tecplot 360 EX allows you to examine a sequence of CFD solutions on successively finer meshes, estimate the order of accuracy of the solutions, as well as perform Richardson extrapolation to improve the accuracy of the solutions. These features are applicable only to smooth solutions (solutions with no discontinuities). They are available via the Error Analysis dialog.

The Error Analysis dialog is displayed by selecting Analyze Error from the Analyze menu.

It contains controls for specifying the solution zones to analyze, the maximum accuracy of your CFD solver, some options specific to accuracy calculation, and buttons to perform the analyses.

You cannot perform error analysis on polygonal or polyhedral zones.

21 - 10.1 Calculating Solution Accuracy

The accuracy of a sequence of three solutions is estimated using Richardson extrapolation on a particular dataset variable you select. The resulting accuracy in both the \(l_1 \) norm and the \(\ell_\infty \) (infinity-) norm is
reported in a text dialog. You also have the options of plotting the overall error versus grid spacing, or plotting the calculated accuracy at each grid node.

21 - 10.2 Selecting Solution Zones

To calculate solution accuracy, you must identify three zones from your dataset. The zones must represent coarse, medium, and fine grid solutions of the same problem. The order in which you enter the zone numbers does not matter. The medium grid must have twice the number of cells in each index direction as the coarse grid, or twice, plus one, the number of nodes. The fine grid must have four times the number of cells, or four times, plus one, the number of nodes as the coarse grid.

Since finite element zones do not have identifiable index directions, the requirement for the coarse, medium and fine grid sizes is only in terms of the total number of cells. It is assumed that successively finer grids have been refined equally in all directions. The requirement is that the medium grid have eight times as many cells (four in 2D) as the coarse grid and the fine grid have 64 times as many cells (sixteen in 2D).

For all zone types, the medium and fine grids must have nodes that overlap the coarse grid nodes. You may type the zone numbers in the text field, or select them by clicking Select and choosing three zones from the resulting list.

21 - 10.3 Specifying the Solver’s Maximum Accuracy

Under some circumstances, Richardson extrapolation can report an accuracy in excess of the solver’s theoretical maximum accuracy. For this reason, Tecplot 360 EX limits the accuracy used by this technique to the value you enter in the Maximum Accuracy text field. Although fractional values are allowed in this text field, you should enter the theoretical maximum order of accuracy of your solver as an integer. That is, two for a second-order accurate solver.

21 - 10.4 Selecting the Dataset Variable

For the accuracy calculation, Tecplot 360 EX performs Richardson extrapolation on one variable in your dataset. It must not be a grid variable. Enter the name of the variable in the Use Data Set Variable text field, or click Select to choose the variable.

21 - 10.5 Plotting the Solution Accuracy

You can plot the results of the accuracy calculation in either or both of two ways. First, you can plot the accuracy at each grid node as a contour plot (XY-plot for 1D data) by setting the Plot Accuracy at All Grid Nodes check box. Second, you can plot the overall error as a log-log XY-plot by setting the Plot Overall Accuracy (log-log) check box. If you select either of these options, new frames will be created to display the plots when you perform the calculation.

The plot of overall accuracy plots the error in the 1-norm and max- (infinity-) norm versus grid spacing for each of the three zones. The grid spacing of the coarse grid zone is taken as unity for this plot. The 1-norm is the average absolute value of the difference between the extrapolated solution and the solutions of the input zones. The max-norm is the maximum absolute value of this difference. Figure 21-22 shows an example of this plot. The slopes of the two lines represent the accuracy of the solver. A significant
difference in the slopes may indicate discontinuities in your solution, or other problems with the calculation.

![Plot of accuracy](image)

Figure 21-22. A plot of the overall accuracy.

The plot of accuracy at all grid nodes plots the calculated accuracy on the grid from your coarse solution. For 2D and 3D grids, it is plotted as a contour plot. For 1D solutions, it is plotted as an XY-plot.

Because this feature creates a new frame, it cannot be saved in the data journal, and the current data journal is invalidated. If you subsequently save a layout file, you will be prompted to save a new data file.

21 - 10.6 Performing the Calculation

When you select [Calculate Accuracy], the accuracy calculation is performed. The accuracy in the 1-norm and max-norm is reported in a text dialog. If you selected either of the plot options, the plots are created in new frames.

21 - 10.7 Extrapolating a Solution

Given three solutions on successively finer grids, Tecplot 360 EX can perform Richardson extrapolation to improve the accuracy of the solution, and report the difference between the extrapolated solution and the original, fine grid solution.

To perform this extrapolation, three zones must be identified in the **Error Analysis** dialog as previously discussed (see Section 21 - 10.2 “Selecting Solution Zones”) and the maximum accuracy of the solver entered (see Section 21 - 10.3 “Specifying the Solver’s Maximum Accuracy”). Once these are entered, clicking Extrapolate Solution creates two new zones in the solution dataset. The first new zone contains the extrapolated solution on the coarse grid. The second new zone contains the difference between the extrapolated solution and the original fine grid solution.

21 - 11 Extracting Fluid Flow Features

Tecplot 360 EX can display important features in 3D fluid flow solutions that make analyzing the solutions much easier. For trans-sonic flow, it can display shock surfaces. For all flows, including incompressible flows, it can display lines indicating the location of vortex cores, as well as separation and attachment lines. These calculations make use of MIT’s FX library. These features are accessed through the **Extract Flow Features** dialog.
The Extract Flow Features dialog is displayed by selecting Extract Flow Features from the Analyze menu.

It contains a drop-down for selecting the desired feature, options for specifying the algorithm to use when extracting vortex cores, as well as an [Extract] button, which performs the desired task.

Flow features are identified using field variables you have identified on the Field Variables dialog. (See Section 21 - 3 “Identifying Field Variables”) and may be affected by settings on the Fluid Properties dialog. (See Section 21 - 1 “Specifying Fluid Properties”) The feature extraction may also be affected by your boundary settings. In particular, separation and attachment lines are only calculated on boundaries you have identified as wall boundaries. Refer to Section 21 - 4 “Setting Geometry and Boundary Options” for more information on specifying boundary conditions for your data.

21 - 11.1 Extracting Shock Surfaces

To extract shock surfaces, select Shock Surfaces from the Feature drop-down, then click Extract. The remaining controls on the dialog are disabled. After calculation, shock surfaces are then displayed as iso-surfaces of a new dataset variable named ShockFeature. This variable is similar to the Shock variable available on the Calculate dialog.

You may note that the displayed shock surface is obscured by clutter due to the sensitivity of the shock function capturing minor oscillations in the solution. A useful technique for displaying only the true shock is to use the value blanking feature to eliminate regions where this clutter appears. Use Tecplot 360 EX’s Calculate dialog to calculate the Pressure Gradient Magnitude variable, then use the value blanking to blank the plot where this variable is less than some constant. A good value to use is \(0.1\rho_\infty c_\infty^2\), or for PLOT3D non-dimensional data, just 0.1.

21 - 11.2 Extracting Vortex Cores

To extract vortex cores, select Vortex Cores from the Feature drop-down, choose from the two available extraction methods, then click Extract. The cores consist of a group of line segments that may not all be connected. As a result, they are displayed using a line segment finite element zone. Display the Mesh or Edge plot layer to see the new zone. NOTE: the new vortex core zone is a static zone.

If you are using value blanking, you may need to interpolate the blanking variable to the new zone. Refer to Section 20 - 9 “Data Interpolation” for information on interpolation and Section 19 - 1 “Value Blanking” for information on value blanking.
Due to the properties of the algorithm used, vortices that happen to exactly align with grid lines may not be properly extracted. This is unlikely to occur in real-world solutions, but is common in test data generated by extruding 2D solutions to produce artificial 3D solutions.

Choosing a Vortex Core Extraction Method

Two algorithms for determining the location of the vortex cores are available. These methods are represented by the Vorticity Vector and Velocity Gradient Eigenmodes options. The Vorticity Vector method determines the location of vortex cores by examining the vorticity vector. The Velocity Gradient Eigenmodes method is more sophisticated and a little more expensive, using the eigenvalues and eigenvectors of the velocity gradient tensor. The eigenmode method tends to give fewer spurious vortex cores.

Visualizing the Vortex Core Strength

If you have chosen a contour variable for your dataset, the vortex strength returned by the FX library will be stored in this variable in the new zone. You may visualize this vortex strength by turning on the Mesh plot layer and choosing to color the mesh of this zone with the contour variable. You may need to modify the contour levels to get an acceptable display of the vortex strength. You may also wish to use the value blanking feature using this variable to blank out the vortex cores where they are very weak or unrealistically strong (as can happen at a no-slip wall boundary).

21 - 11.3 Extracting Separation and Attachment Lines

Separation and attachment lines show where a fluid flow separates from or reattaches to a no-slip wall boundary. These lines can give you an indication of where separation bubbles or recirculation regions appear in your data. To calculate them you must first identify one or more Wall boundaries using the Geometry and Boundaries dialog. (See Section 21 - 4 “Setting Geometry and Boundary Options.”) The separation and attachment lines will be calculated on these boundaries.

Due to the algorithm used by the FX library to detect separation and attachment lines, these lines may not be detected for flows that are essentially two-dimensional. (That is, flows which contain no variation along one of the three spatial dimensions.)

To calculate separation and attachment lines, select this option in the Feature drop-down and click Extract. The lines, if any, will be displayed in new static zones, one zone for separations lines and a separate zone for attachment lines. As with vortex cores, the lines consist of sets of possibly unconnected line segments, which are displayed using line segment finite element zones. Display the Mesh or Edge layer to see the lines.

21 - 11.4 Excluding Blanked Regions

For vortex core and separation/attachment line calculations in ordered zones, you may choose to exclude blanked regions from the calculation. Select this option by selecting the Exclude Blanked Regions from Ordered Zones toggle. This will prevent lines from being calculated in regions of ordered zones that are not plotted due to blanking. Note, however, that this will invalidate the data journal. If you subsequently save a layout file, you will be prompted to save a new data file as well.
The Probe tool allows you to select a location in your plot and view the values of all variables at that location in the Probe sidebar. You can also view information about the dataset itself while probing. With the Probe At dialog (accessed via Data>Probe At), you can specify the location of the probe as a set of spatial coordinates X, Y, and Z, one of the polar coordinates Theta and R, or as a set of I, J, and K-indices. You select one or more locations in the data field where information is to be collected, and the resulting information is displayed in the Probe sidebar.

When you probe with the mouse, you can probe in either of two modes: Interpolate or Nearest Point. In Interpolate mode (accessed by a single mouse click) the value returned is the linearly interpolated value for the specified locations. In Nearest Point mode, accessed by Control-click, the value returned is the exact value at the closest data point in the field.

If Tecplot 360 EX appears to be unloading variables that you are trying to Probe, you may need to adjust your memory threshold in Options>Performance>Misc. Refer to “Load On Demand” on page 466 for additional information.

22 - 1 Field Plot Probing with the Mouse

The most direct method of probing is to use the Probe tool. Click at any point in your plot to probe in Interpolate mode, which displays the Probe sidebar with information interpolated for that point. Control-click at any location to probe in Nearest Point mode, which will obtain probe information for the data point closest to the crosshair cursor and display it in the Probe sidebar.
The following table shows the information returned for each type of probe action for field plots. (All mouse click operations are using the left mouse button.)

<table>
<thead>
<tr>
<th>Probe Action</th>
<th>Information Returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click</td>
<td>If the pointer is over a valid cell, the value returned is the interpolated field values from all nodes in the cell.</td>
</tr>
<tr>
<td></td>
<td>2D Cartesian plots - If multiple cells are candidates, the cell from the highest numbered zone is used.</td>
</tr>
<tr>
<td></td>
<td>3D Cartesian plots - The closest cell in a zone, slice, iso-surface or streamtrace is selected. If multiple cells are candidates, the cell closest to the viewer is used, with priority given to surfaces drawn with mesh, flooded contours, or shading. Translucent zone surfaces are excluded from probing priority.</td>
</tr>
<tr>
<td>Control-Click</td>
<td>If the pointer is over a valid cell, the field value from the nearest node in the cell is returned. If multiple cells are candidates:</td>
</tr>
<tr>
<td></td>
<td>2D Cartesian plots - The cell from the highest number zone is used.</td>
</tr>
<tr>
<td></td>
<td>3D Cartesian plots - The cell closest to the viewer is used. If the pointer is not over any cell, then the field values from nearest data point (as measured in distance on the screen) are returned.</td>
</tr>
<tr>
<td>Shift-Control-Click</td>
<td>Return the field values from the nearest point on the screen (ignoring surfaces, zone number or depth of the point).</td>
</tr>
<tr>
<td></td>
<td>This is useful in 3D for probing on data points that are on the back side of a closed surface without having to rotate the object.</td>
</tr>
<tr>
<td></td>
<td>In 2D this is useful for probing on data points for zones that may be underneath other zones because of the order in which they were drawn.</td>
</tr>
<tr>
<td>Alt-Click (3D only)</td>
<td>Same as Click except ignore zones while probing. (Probe only on streamtraces, iso-surfaces, or slices.)</td>
</tr>
<tr>
<td>Alt-Control-Click</td>
<td>Same as Control-Click except ignore zones while probing. (Probe only on streamtraces, iso-surfaces, or slices.)</td>
</tr>
<tr>
<td>Alt-Control-Shift-Click</td>
<td>Same as Shift-Control-Click except ignore zones while probing. (Probe only on streamtraces, iso-surfaces, or slices.)</td>
</tr>
</tbody>
</table>
The probe results are displayed in the Probe sidebar. To copy data from the Probe sidebar, select the range of cells to be copied by dragging (or by clicking a start position, then Shift-clicking an end position), then right-click and choose Copy from the context menu.

![Image of Probe interface]

Interpolate mode does not work for I-ordered data displayed in a 2D or 3D Cartesian plot; if you probe such data you will always get the error message “Point is outside of data field,” because Tecplot 360 EX cannot interpolate without a field mesh structure. You should instead use the Nearest Point mode in such situations.

22 - 2 Field Plot Probing by Specifying Coordinates and Indices

Use the Probe At dialog for precise control over your probe location, probing using I, J, and K-indices, or probing inside a 3D volume. You can launch the Probe At dialog from the Data menu.

22 - 2.1 Probe At Position

To probe at a specified location using spatial coordinates (in Interpolate mode), launch the Probe At dialog via the Data menu or the Probe sidebar.

The Position page of the Probe At dialog has the following options:

- **Enter Coordinates** - Enter the X, Y, and Z-coordinates of the desired probe location.
- **Probe Within Volume [DEFAULT]** - If the zone you are probing is a 3D volume zone, toggle on Probe Within Volume to ensure that the probe is performed at the indicated point. If you specify a position within a 3D volume zone and the Probe Within Volume is not selected, Tecplot 360 EX probes at the surface of the zone nearest to the user.
- **Probe** - Select the [Probe] button to perform the probe. The Probe sidebar will display the interpolated values for the specified location.

If the entered location is not within a cell, Tecplot 360 EX will return the closest surface to the entered location along the line-of-sight ray.
Probing

22 - 2.2 Probe at Index

To probe at a specified location using dataset indices (in Nearest Point mode), launch the Probe At dialog (accessed via the Data menu or the Probe sidebar) and select the Index page (shown below).

The Index page of the Probe At dialog has the following options:

- **Mapping/Zone** - Select the desired zone or mapping from the drop-down.
- **I, J, K** - Enter the I, J, and K-indices of the desired probe location. (For finite element and I-ordered data, you can enter only the I-index. For IJ-ordered data, you can enter both I- and J-indices. For IJK-ordered data, you can enter I, J, and K-indices.)
- **Probe** - Select the [Probe] button to perform the probe. The Probe sidebar will display interpolated values for the specified location.

22 - 3 Probe Sidebar

You can view probed data in the Probe sidebar, which appears automatically when probe results need to be displayed. It can also be opened from the Data menu.

The Probe sidebar initially appears docked on the right side of the workspace, but it can be docked to the left side as well, or combined with other sidebars. It may also be “torn off” from the workspace and dragged anywhere on any of your displays.

You can choose what the Probe sidebar displays via the tabs along its side. (The tabs may appear on either the right or left side of the sidebar depending on where it is docked.) Available tabs are:

- **Variable Values** - Examine values of all variables at any selected location.
- **Cell Center Values** - Examine values of all variables at the center of the clicked-on cell.
- **Zone and Cell Information** - Report characteristics of any location in a data field. The characteristics reported include the indices of the selected cell or point, the zone number, the dimensions of the zone, and the type of zone (ordered or finite element).
- **Face Neighbor** - Examine neighboring cells of the clicked-on cell.

To copy data from the Probe sidebar, select the range of cells to be copied by dragging (or by clicking a start position, then Shift-clicking an end position), then right-click and choose Copy from the context menu.
22 - 3.1 Variable Values

Choosing the Variable Values tab in the Probe sidebar lists every variable in the current dataset, together with its value at the specified probe point. The zone name and number and the current solution time (if the data set contains transient data) also appear.

The Probe At button opens the Probe At dialog (see Field Plot Probing by Specifying Coordinates and Indices). Click the [Load Variables] button to open the Load Variable dialog and load any variables you wish to view when probing.

22 - 3.2 Cell Center Values

Choosing the Cell Center tab in the Probe sidebar lists the value of every variable in the current dataset at the center of the cell that was selected. The Zone name and number and the current solution time (if the data set contains transient data) are also displayed.

The Probe At button opens the Probe At dialog (see Field Plot Probing by Specifying Coordinates and Indices). Click the [Load Variables] button to open the Load Variable dialog and load any variables you wish to view when probing.
22 - 3.3 Zone and Cell Information

Choosing the Zone/Cell Info tab in the Probe sidebar lists the following information about any probed data point, regardless of the format of the data.

The following information appears:

- The number and name of the probed zone.
- The format of the zone, either ordered or one of the finite element formats (FE-Triangle, FE-Quad, FE-Tetra or FE-Brick).
- The Current Solution time of the probed point.

For ordered zones, the following additional information is displayed:

- I-Max - Maximum I-index of the zone.
- J-Max - Maximum J-index of the zone. (J-Max is one for I-ordered data.)
- K-Max - Maximum K-index of the zone. (K-Max is one for IJ-ordered data).
- Plane - Shows the type of plane. I, J, or K displays the index of the point at the principal data point of the cell containing the probed point. (If the point is probed using Control-click for Nearest Point, the label reads "I, J or K-Index.")
- Face Plane - The I, J, or K-plane that is probed.
- Face Indices - The planes that are not mentioned in Face Plane, these are the other faces that are showing in 3D, or are the axes in 2D.

For cell-based finite element zones (FE-Triangle, FE-Quad, FE-Tetra or FE-Brick), the following additional information is displayed:

- Total Pts - Total number of points in the zone.
- Total Elems - Total number of elements (cells) in the zone.
- Node Num - Number of the probed node. This field is filled in only if the point is probed using Control-click for Nearest Point.
- Elem Num - Number of the probed element.
- Node 1 - 8 - Number of the node defining Node 1-8 of the cell.
 - Node 4 - FE-Quad, FE-Tetra, and FE-Brick only.
 - Node 5-8 - FE-Brick only.

The Probe At button opens the Probe At dialog (see Field Plot Probing by Specifying Coordinates and Indices).

Index values are not displayed for subzone data sets (.szplt) since these values cannot currently be reliably determined with this file format.
22 - 3.4 Face Neighbor

Choosing the Face Neighbor tab in the Probe sidebar displays cells that neighbor the selected cell.

The Probe At button opens the Probe At dialog (see Field Plot Probing by Specifying Coordinates and Indices).

A cell is considered a neighbor if one of its faces shares all nodes in common with the selected cell, or if it is identified as a neighbor by face neighbor data in the dataset. The current solution time is also displayed.

For ordered (IJ or IJK) zones, cell numbers are defined by the index value of the first node

\[\text{Index} = i + (j - 1)I_{\text{max}} + (k - 1)J_{\text{max}}K_{\text{max}} \]

where, \(i, j, \) and \(k \) are the \(i, j, \) and \(k \) values for the location of the first node.

Because the number of nodes in each direction is one greater than the number of cells in that direction, there is no cell to correspond with the last point in each row. In the example below, there is no cell numbered “3”, yet the first cell in the second row is numbered “4”. As you define face neighbors, it may help you to think of a “ghost cell” at the end of each row (where \(I = \text{MaxI} \)) and at the end of each column in 3D (where \(J = \text{MaxJ} \)).

For FE zones, the cells are numbered in the order that they appear in the connectivity list. In the following example “7 8 19 11” is the cell number 2:

*Example connectivity list of 3 cells:
2 4 8 19
7 8 19 11
1 2 4 5

22 - 4 Line Plot Probing with the Mouse

You may probe XY and Polar Line plots in much the same way you probe field plots. You can use the probe mouse mode to obtain interpolated variable values at any given location, or obtain exact values from a specified (X, Y) or (Theta, R) data point. When you probe an XY Line plot in the standard mode, Tecplot 360 EX displays a vertical or horizontal line, depending on whether you are probing along an X- or a Y-axis. When you probe a Polar Line plot, a radial line or a circle is displayed depending on whether you
Probing

are probing along the Theta- or R-axis. In either case, the probe is performed along the displayed line (or circle).

To probe in interpolate mode: activate the probe tool and click anywhere on your plot. Axis variable values of all active mappings that lie along the probe line are interpolated and displayed in the Probe sidebar.

To probe in Nearest Point mode, activate the probe tool and Control-click anywhere on your plot. When you Control-click, Tecplot 360 EX displays the exact X and Y, or Theta and R-values of the data point closest to the location clicked.

22 - 4.1 Line Plot Probing in Interpolate Mode

Interpolate mode is the standard probe mouse mode in line plots just as for field plots. For XY Line plots, you can probe along any of Tecplot 360 EX's five X-axes, or along any of Tecplot 360 EX's five Y-axes. By default, probing is performed along the X1 axis. For Polar Line, probing is done along the Theta-axis by default.

In Polar Line plots, many combinations of Theta- and R-values can result in the same point on the screen. When using the mouse in Interpolate mode to probe along the Theta-axis, Tecplot 360 EX uses the Theta-value within the current Theta-axis range to determine the corresponding R-values reported in the Probe sidebar. This behavior may result in no probe information shown for a mapping that has Theta-values entirely outside the current Theta-axis range, even though the mapping crosses the probe line on the screen. (For example, probing along the Theta-axis in interpolate mode misses a mapping representing only Theta-values several cycles outside the current Theta-axis range.) Similarly, when using the mouse in Interpolate mode to probe along the R-axis, Tecplot 360 EX uses the R-value within the current R-axis range and may miss mappings that are shown on the plot but have R-values different from the R-axis range.

To enter the Probe Interpolate mode, choose Probe At from the Data menu. The Probe At dialogs for XY and Polar Line plots are shown below:

Select the button corresponding to the axis you want to probe along, then enter the position. Click Probe to perform the probe.

The Probe sidebar appears if it is not already visible, For interpolated values, the Probe sidebar lists every active mapping and the interpolated value the opposing axis variable for that mapping. The value along the probed axis is listed at the bottom of the Probe sidebar.
In the **Probe** sidebar, the probe value is dashed (---) if the probe is out of range for the mapping. The probe value is gray (inactive) if the mapping is not using the specific axis which you are probing (for example, you probe the X1 axis and the mapping uses the X2 axis). This will only happen in XY Line plots with multiple X or Y-axes.

By default, each mapping is shown on a single line, which allows display of about the first ten characters of the mapping name and seven significant digits of the variable value.

- **X-Value, Y-value** - X, Y-value of the nearest data point to the probe position.
- **I, J, or K-Index** - I, J or K-index of the nearest data point to the probe position.
- **Map** - Number and name of the nearest map to the probe position.
- **Zone** - Number and name of the nearest zone to the probe position.
- **I, J, or K-Max** - Maximum I, J or K-index of the current zone.
- **X or Y-Axis** - X or Y-axis associated with the current map.

Index values are not displayed for subzone data sets (.szplt) since these values cannot currently be reliably determined with this file format.

22 - 4.2 Line Plot Probing in Nearest Point Mode

Nearest Point probe mode provides the exact X and Y or Theta and R-values of the data point closest on the screen to the probed location, together with information on the mapping and the zone to which the probed point belongs. If a data point is common to multiple mappings, the probe returns information on the highest numbered mapping. For example, if a data point is plotted as part of two mappings, numbered 1 and 2, the probe results are displayed for mapping 2.

To enter the **Probe Nearest Point** mode select the **Probe** tool, ![Probe tool](image) from the Toolbar and Control-click at the desired probe location. The nearest point is calculated from the actual location of the cross-hair and is independent of the axis you were probing along.

The following information about the nearest data point is displayed in the **Probe** sidebar:

- **X or Theta-value.**
- **Y or R-value.**
- **I, J, or K-index.**
- The number and name of the mapping associated with the data point.
- The number and name of the zone referenced in the mapping.
- The maximum I, J, and K-indices of the zone.
- For XY Line plots, the X-axis and Y-axis associated with the mapping.

22 - 5 Data Editing

Using the **Adjustor** tool, you can actually modify the coordinates of your data with the mouse. See "**Adjustor Tool** on page 26" for more information.

If you attempt to double-click, but move the mouse between clicks, you may find that you have moved your data point.
Probing
Part 5 Final Output
Output

Tecplot 360 EX provides a variety of formats for you to output and export your complete plots. This chapter discusses saving your settings using layout files or stylesheets, preparing plots for web publishing, and writing data files to a file.

For information on exporting or printing your completed plot(s), please refer to Chapter 25: “Exporting” or Chapter 24: “Printing”, respectively.

23 - 1 Layout Files, Layout Package Files, Stylesheets

Tecplot 360 EX has three different types of files for storing plot information:

- **Stylesheets (.sty)** - Stylesheets store information about a single frame and do not include any information about the data used by the frame.
- **Layout Files (.lay)** - Layout files store information about all the frames in the workspace, including identification of, and links to, the data used by each frame.
- **Layout Package Files (.lpk)** - Layout package files are an extension to layout files where data and an optional preview image are included.

Layout and layout package files are the preferred method for saving the style of your plot. They save a complete picture of the workspace and are quick-and-easy to load and save. Stylesheets contain the style of a single frame in Tecplot 360 EX.

23 - 1.1 Creating Layouts and Stylesheets for Tecplot Focus

If you are working with stylesheets or layouts in Tecplot 360 EX that you wish to share with Tecplot Focus users, please be aware that the following features are not available in Tecplot Focus:

- Any aspect of the CFD Analyzer (i.e. options available from the Analyze menu in Tecplot 360 EX) including integration
- Data files loaded using a loader not available in Tecplot Focus
- Data files that contain polygonal or polyhedral zones or more than 5 million data points.
- Versions of Tecplot Focus prior to Tecplot Focus 2016 R1 do not support more than one slice group or more than one contour group. This limitation does not apply to newer versions.
If any of the above items are included in your stylesheet or layout file, it will not load in Tecplot Focus. However, stylesheets and layouts created by Tecplot Focus will load in either product.

23 - 1.2 Working with Layout Files from Previous Releases

If you are working with layout files from previous releases of Tecplot 360 EX, Tecplot 360, Tecplot Focus, or their precursor called simply Tecplot, please note the following:

- **Transform Coordinates** - Some previous versions incorrectly recorded the `$TRANSFORMCOORDINATES` command. In these versions, the variable number sub-command options to this command were recorded as zero-based values instead of one-based values. Macros or layout files created with versions up through Tecplot 10, Tecplot 360 2006 R2, or Tecplot Focus 2006 containing `$TRANSFORMCOORDINATES` should increment each variable sub-command option by one to operate correctly with versions 2008 and newer.

- **Zone Numbers** - Due to changes in a third-party library used by the FEA Loader, which is used for several data formats, zones may load in a different order in Tecplot 360 EX 2014 and later than in earlier versions. If you have any layouts that refer to zones in an FEA data set, you should double-check to make sure that these still refer to the desired zone.

23 - 1.3 Exporting Backward Compatible Data Files

While Tecplot 360 EX layouts and layout package files are not backward compatible, you do have the option to export data files written in one version of Tecplot 360 EX to be read by an earlier version. To do this, use the **Write Data Options** dialog as described in Section 23 - 2 “Data File Writing”.

23 - 1.4 Stylesheets

Stylesheets are useful when:

- Pre-processing must be done to a dataset prior to attaching a style. You may need to load a dataset and run some equations or do interpolation or zone extraction before assigning a style. The style may reference objects or variables that do not exist in the original data and it is necessary to assign the style after they are created.

Tecplot 360 EX’s data journaling capabilities together with layout files eliminate this situation in many cases.

- Switching styles on large datasets. You may want to load a large dataset and generate two full page plots. Each plot has a different style. By using a stylesheet for the second plot you avoid having to reload the dataset.
- Copying the style of one frame to another frame in the same layout.
- Saving just part of a frame’s style, such as just the contour levels.

A stylesheet includes the following attributes (Figure 23-23):

- Type of plot (a 2D contour plot in 2D or an XY Line plot)
- Colors used
- Current view of the data
- Axes display
393

Layout Files, Layout Package Files, Stylesheets

- Text and geometry

Figure 23-23. Some of the items considered part of the frame style.

To learn how to use a stylesheet, see Section 2 - 3.7 "Save Frame Style" and Section 2 - 3.8 "Load Frame Style".

23 - 1.5 Layout Files

A plot often consists of multiple frames or even multiple datasets. Layout files allow you to capture all the information on the plot. Layout files include instructions on how to create the data used in the plot, the frame layout and dataset attachments, axis and plot attributes, the current color map, and so forth.

Figure 23-24 shows a layout with four frames. The frame in the upper left-hand corner is attached to dataset 1. The two frames on the right are both attached to dataset 2. The frame in the lower left is not attached to a dataset.

Figure 23-24. Layout of four frames using two datasets.

If a frame defined in a layout file requires an attached dataset, the data files necessary to build the dataset are referenced in the layout file. These data files can be referenced using absolute paths or relative paths. When using relative paths on Windows operating systems, the data files must be on the same drive as the layout file.
A layout file may also contain the data journal; a set of macro commands which alter the data or create new data. The data journal commands replicate the data modifications made to the original data (in files) during prior Tecplot 360 EX sessions. Not all data operations are supported by the data journal. For more information, see Section 5 - 2 “Data Journaling”.

In addition to storing the individual style of each frame, layout files record:

- Page layout information (including the size and orientation of the paper).
- Color spectrum information, including the color maps in use.

To include the field data with a layout, use a layout package file. For more information, see Section 23 - 1.6 “Layout Package Files”.

23 - 1.6 Layout Package Files

Layout package files allow you to transmit raw data, along with style information in a single file. With layout package files the view can be changed, different plot types tested, and so forth. Layout package files have the same properties as standard layout files. (See Section 23 - 1.5 “Layout Files”). Layout package files also contain all data associated with frames in the layout, and an optional preview image of the Tecplot 360 EX workspace. An extension of .lpk is used.

23 - 1.7 Working with Layout and Layout Package Files

New Layout

File-New Layout creates a new layout in your workspace after removing any existing frames and resetting the paper setup to the default configuration. Anything not saved before this action will be lost.

Layout Saving

Save layout files using the Save Layout (Control-S) or Save Layout As (Control-W) options under the File menu.

The Save Layout dialog has the following options:

- Save As Type - Choose “Linked Data (*.lay)” or “Packaged Data” (*.lpk)
• **Use Relative Path (Linked Layout Only)** - By default, Tecplot 360 EX saves the name of the data files used in the layout with their relative file paths. To save your layout using absolute file paths, toggle off **Use Relative Path**.

• **Include Preview Image (Layout Package Files Only)** - Toggle on **Include Preview Image** to include a preview image with the file.

After saving the layout file, you will be asked how to handle any dataset changes. See [Dataset Changed](#) for more information.

Dataset Changed

In Tecplot 360 EX, layout files contain references to the data files in use. The datasets are not copied directly into the layout file. Therefore, if you make changes to the dataset using Tecplot 360 EX and wish to save the layout, Tecplot 360 EX will ask you whether you want to create new data files reflecting the changes made. If you answer in the affirmative, Tecplot 360 EX prompts you for a file name under which to save the changed data. (If your layout has multiple datasets, Tecplot 360 EX prompts you for a file name for each modified dataset.) The new data is then referenced in the layout instead of the original.

Layout File Opening

Open layout files using the **Open Layout** (Control-O) option from the **File** menu. You can also access this function by choosing **File>Load Data** and selecting Tecplot Layout Loader from the file type menu.

See Table A - 4 for information on overriding the files referenced in a layout file using command line options.

23 - 2 Data File Writing

You can write out the dataset in the active frame in various Tecplot file formats, including backward-compatible binary formats. You must choose which zones and variables of the data to write, as well as the format for the saved file (if applicable).

To write the dataset in the active frame to a file, choose **Write Data** from the **File** menu. The **Write Data** dialog appears to let you name the file and to choose its format from the following:

• **Tecplot Binary Data Writer (current)** - Use the current Tecplot binary file format, the best choice for small to moderately-sized data sets. Files are saved with the filename extension `.plt`.

• **Tecplot Binary Data Writer (older)** - Several previous versions of the Tecplot binary format are supported if you need to exchange data with users of older version of Tecplot products.

• **Tecplot ASCII Data Writer** - Uses the Tecplot ASCII data format. You will generally not want to use this loader except in very limited circumstances, as it is much slower to load than binary format and does not support load-on-demand. Files are saved with the filename extension `.dat`.

395
• Tecplot Subzone Data Writer - Write data in the Tecplot Subzone (.szplt) format. This format is intended for large data files; it loads the least amount of data needed for each operation, and loads data only when needed, improving interactive performance. Files are saved with the filename extension .szplt.

When writing data in Tecplot binary or ASCII format, the Write Data Options dialog appears with the following options:

• Details to Save - Specify which record types you want to include in the data file by selecting the appropriate checkboxes. By default, all record types present in the active frame’s dataset are selected. These details include:
 • Text, Geometries, Custom Labels
 • Field Data - Select this detail to save zone data.
 • Data Linkage (If Possible) - Save the variable and connectivity sharing between zones existing in the dataset, reducing its size and loading time.
 • Generated Face Neighbor Information - Automatically save the face neighbor information generated by Tecplot 360 EX for finite element zones. This increases the dataset size and loading time, but improves performance after loading.

• Zone/Geometry Format - For ASCII, choose to write the file in POINT format or BLOCK format (BLOCK is required if any variables are cell-centered).

• Zone(s)/Variable(s) - Select the zones and variables to include.

• Associate Layout with Newly Saved Data File - If activated, Tecplot 360 EX replaces internal references to loaded data with a reference to the new file. When you later save a layout, this layout file will refer to the new file, not to the original data file.
Printing

Printing your plot is the process of sending the plot image to an output device, print spooler, or a file. Typically the output device is a printer, but it may be a plotter, film recorder, file or typesetter. If you are creating files for use in another program, you should use Tecplot 360 EX’s Export option (accessed via the File menu) to create your files – Export includes all the supported print file types, as well as several standard graphics formats. See Chapter 25: “Exporting” for complete details.

24 - 1 Plot Printing

To print a plot, select “Print” from the File menu.

Tecplot 360 EX supports the standard printer drivers for the supported operating systems. The Print dialog has the following options:

- **Format** - Indicates the printer chosen to print the plot. You can choose a different printer in the Print Setup dialog.
- **Print Setup** - Calls up the Print Setup Dialog, in which you can choose a printer and other printing settings.
- **Color** - Select this check box for color output; deselect the check box for monochrome output.
- **Render Type**
• Vector - Select this option to create print output using the drawing commands of the printer. The printer renders the plot, yielding higher resolution, but some plot options are not available.

vector graphics formats do not support:
• Translucency
• Contour flooding with Gouraud shading
• Contour flooding using the continuous color distribution method

• Image - Select this option to create print output using an image. Rendering is done by Tecplot 360 EX at the specified resolution, usually less than the printer’s resolution. However, all plot options are available.

To preserve quality of color in your plot (translucency, contour flooding with Gouraud shading, or continuous contour flooding), select the Image render type.

To preserve the quality of text in your plot, select the Vector render type.

• Force Extra Sorting for all 3D Frames - This option is available when the Vector option has been selected and overrides the setting in the Advanced 3D Control dialog. If this check box is not selected, Tecplot 360 EX will choose sorting algorithms based on the advanced 3D options that were chosen for each frame. When printing 3D plots in a vector graphics format, Tecplot 360 EX must sort the objects so that it can draw those farthest from the screen first and those closest to the screen last. By default, Tecplot 360 EX uses a quick sorting algorithm. This is not always accurate and does not detect problems such as intersecting objects. If Extra Sorting is selected, Tecplot 360 EX uses a slower, more accurate approach that detects and resolves such problems.

• Resolution (dpi) - Available when the Image option is selected. Enter the resolution in terms of dpi in the text field. Larger resolutions may result in an out-of-memory condition, or produce very large files. Lower resolutions may yield less-attractive output images.

Control-P is the shortcut command for the Print dialog.

24 - 2 Setup
You can set various parameters relating to the paper, including paper size and orientation, using the Paper Setup dialog or the Print Setup dialog. A change to your paper settings in either the Paper Setup dialog or the Print Setup dialog will automatically update the other.
24 - 2.1 Printing Setup for Windows

Print Setup Dialog

On Windows platforms, use the Print Setup dialog to set up your paper. The Print Setup dialog is accessed via the Print dialog (accessed via the File menu) and has the following options:

- **Printer** - Choose the printer and set its properties.
- **Paper** - Specify the paper size and source tray using the following drop-downs:
 - **Size** - Select the paper size. The choices are printer-dependent.
 - **Source** - Choose a paper tray from the drop-down.
- **Orientation** - Specify one of the following options:
 - **Portrait** - The horizontal axis of the plot is aligned with the short side of the paper.
 - **Landscape** - The vertical axis of the plot is aligned with the short side of the paper.

By default, Tecplot 360 EX uses the standard Windows print drivers. You can choose to use Tecplot’s print drivers by adding the following line to your tecplot.cfg file:

```
$!INTERFACE USETECPLOTPRINTDRIVERS= YES
```

If you use Tecplot’s print drivers, you will use the Print Setup dialog for subsequent printing.
Printing

Paper Setup Dialog

To adjust the paper size, orientation, and background color for your plots, select the Paper Setup option from the File menu. The current settings for these options are reflected in the representation of the paper in the workspace. To view the paper, select the “Show Paper on Screen” check box in either the Paper Setup dialog or the Ruler/Grid dialog (accessed via the Options menu). This check box is selected by default.

The Paper Setup dialog, in contrast with the Print Setup dialog on Windows platforms, offers you only six paper sizes. These may not be compatible with the paper sizes your printer supports. You cannot select from multiple paper trays with the Paper Setup dialog. You may set screen display options and fill colors with the Paper Setup dialog.

The following options are available in the Paper Setup dialog:

- **Size** - Choose the size of the paper from the following six selections:
 - Letter (8.5 x 11 inches).
 - Double (11 x 17 inches).
 - A4 (21 x 29.7 cm).
 - A3 (29.7 x 42 cm).
 - Custom 1 (8.5 x 14 inches).
 - Custom 2 (8 x 10 inches).

 On Windows systems, paper size Custom 2 is overwritten with the size selected in Print Setup if that size does not exist in Tecplot 360 EX.

 You can customize all six paper sizes in the configuration file, as well as their hard-clip limits. The hard-clip limits are the lines on the edges of the paper that show where your printer cannot print. You can set the hard-clip limits to larger values for use as guides in placing your plots on the paper.

- **Orientation** - Choose the paper orientation. You have two options: Portrait and Landscape. In Portrait orientation, the long axis of the paper is aligned with the vertical axis of the plot. In Landscape orientation, the long axis of the paper is aligned with the horizontal axis of the plot.

- **Paper Fill Color** - Select a color to use for the paper background. This color is used to display the paper in the workspace. You can select the check box Use Paper Fill Color when Printing to have Tecplot 360 EX print this background color on the hard-copy as well.

24 - 2.2 Printing Setup for Linux

The Print Setup dialog on Linux operating systems includes a field for entering a spool command, along with startup and mopup strings. Contact your system administrator if you have any questions about how to set up these commands.

- **Spool Command** - Printers on Linux systems are accessed via print spoolers that manage the print queue. Typically you use either the lpr or lp commands to send files to the print spooler. There may be command-line options that need to be set on your system, as well, such as a flag to specify a particular printer.
In the Spooler Cnd text field, enter the appropriate spool command for your system, using the @ symbol to represent a file name.

For example, suppose you routinely use the following spool command to print a file named myfile.ps: "lpr -m -r myfile.ps." The appropriate spooler command to enter in the Spooler Cnd field is then "lpr -m -r @." When printing to a spooler, Tecplot 360 EX creates temporary files with names of the form tp??????, where the ?s are randomly generated characters. Tecplot 360 EX does not delete these temporary files automatically; commands to do so should be included in your spool command. In our example, the -r flag says to remove the file when done.

- **Startup and Mopup Strings** - A startup string is an initialization string that sets up your output device to accept the plot created by Tecplot 360 EX. A mopup string is a reset signal that tells your output device that the special output has ended. For most devices no startup or mopup strings are needed.

Enter the appropriate startup string or mopup string in the appropriate text field. Special characters are generated by using Macro Codes (such as "%E" for the escape character and "^nnn" for any ASCII character with a decimal ordinal value of nnn). Check your printer documentation for the appropriate strings.

- **Extra Precision** - For PostScript output, you can control the numerical precision used in your print files. Print files contain numbers that define sizes and positions of pieces of the plot on the output paper. These numbers are defined as integers between zero and about 8,000. Usually, this provides sufficient resolution for most output devices. Occasionally, you may need more resolution. For example, printing to a high-resolution output device like a Linotronic typesetter may require more precision; making print output with very small cells or elements may also require more precision.

To increase the precision of the output, increase the value in the Extra Precision field of the Print Setup dialog. You specify one Extra Precision value for all formats that supports precision control. The precision is defined as the number of digits to the right of the decimal. Normally, precision is zero. The disadvantage of setting precision high is that the print files increase in size. The higher the Extra Precision setting, the larger your print files, but the more accurate the plot. The maximum setting for the precision is eight.
Printing
Exporting

The Export dialog, accessible from the File menu, can be used to create files for export to other applications. Tecplot 360 EX can export files in variations of three types: vector graphics, image, and movie file formats.

Tecplot 360 EX exports the following vector formats:

- **EPS Export** - Vector or image graphics in a special type of PostScript file designed for inclusion in other applications.
- **PostScript (PS) Export** - Vector or image graphics suitable for direct printing, but usually unsuitable for import into other applications. It is recommended that you use the Encapsulated PostScript (EPS) format for importing into other applications.
- **WMF Export** - Vector graphics to import into various Windows applications.

Tecplot 360 EX exports the following image formats:

- **BMP Export** - Image in Windows Bitmap format.
- **JPEG Export** - JPEG files are very small for their resolution and quite common on the internet, but they do involve some loss of image quality that may affect certain plot images.
- **PNG Export** - Also common on the internet, PNG images have a high image quality but larger file size than JPEG.
- **TIFF Export** - Image in Tagged Image File Format.

Tecplot 360 EX can also export animations to various movie file formats. For more information on exporting animations, see Chapter 29: “Animation”. Tecplot 360 EX can also export animations to sequenced image files. See Section 29.4.6 “Sequenced Image Files” for more information.

Certain image formats support anti-aliasing, a feature that smooths jagged edges on text, lines and edges. This feature is discussed at the end of this chapter. See Section 25.4.4 “Antialiasing Images”.

Tecplot 360 EX can also export images directly to the clipboard instead of to a file. See Section 25.5.5, “Clipboard Exporting to Other Applications”, for more information.

Performance Tips
Exporting

If exporting is taking an unusually long time, or you get an error message saying that the image cannot be exported, the most likely cause is that the image width you are trying to export is too large. Selecting a smaller image width should speed up the export process.

For an image export size of Length x Width, the file size for an uncompressed true color image is approximately Length x Width x 3. Memory requirements to export such an image can be up to twice this size.

For 256 color images, the maximum file size is approximately Length x Width, but is usually less since all 256 color image files are compressed. However, the memory requirements for exporting are the same as they are for a true color uncompressed image.

Anti-aliasing can dramatically increase the memory and time requirements of image export, since a large image is rendered first and then downsized to the final image dimensions. Furthermore, some graphics card drivers may not report an error if they cannot allocate enough memory for this operation, instead producing a black image or other rendering issues. See Section 25 - 4 “Antialiasing Images”.

25 - 1 Layout Packages

As an alternative to exporting image and vector representations of plots, Tecplot 360 EX supports the Packaged Data layout format, or layout packages. A layout package (exported from Tecplot 360 EX as an .lpk file rather than as a .lay file) contains the data needed for the layout, and only that data. You can reload the resulting file into Tecplot 360 EX for viewing and rotation. The plot will appear visually identical to the original plot, although you cannot manipulate the variables and other plot elements as in the source plot.

By streamlining the elements included in the exported file, the Packaged Data export reduces the size of the resulting LPK to an average of 25% of the original file size (although the reduction varies greatly depending on what the original layout includes).

To export your current (3D Cartesian) plot with the Tecplot Viewer export format, choose “Save Layout As” from the File menu. In the dialog that appears, select “Packaged Data” as the format, and click OK.

To reduce the file size, the lightweight file includes only the following.

- Data for only the current surfaces and lines drawn for the current plot
- Derived elements (such as slices and iso-surfaces) as zones
- The variables necessary to draw each zone (For example, if an iso-surface displays a contour flood, only the spatial variables and the contour variable data will be output to the file for that iso-surface’s zone)
- Text, geometries, custom labels, and all visible data elements displayed on your plot

The following restrictions apply.

- Only the active frame of a 3D Cartesian plot may be exported
- Only the current time step of a transient data set may be exported
- The plot must include at least one zone, slice, streamtrace, or iso-surface
- Several plot features will not be reflected in the exported plot:
 - Finite element volume zones with the Contour or Shade layer enabled and a “Surfaces to Plot” setting other than “None” or “Boundary Faces” will not display.
 - Volume zones with the Scatter layer enabled and a “Points to Plot” setting other than “Nodes on Surface” or “Cell Centers Near Surfaces” will not display.
 - Finite element volume zones with the Scatter layer enabled and a point index I-Skip other than one (1) may render scatter symbols in different locations.
 - IJK blanking of ordered zones will not display.
 - Streamtrace arrowheads may render at different locations and with different sizes.
25 - 2 Vector Graphics Format

Vector export files have device-independent resolution and thus can be easily resized, but they have the same limitations as vector print output. Table 25 - 1 provides a summary of the advantages and disadvantages of using vector graphics file formats.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution Independent (can be re-sized over and over to any size)</td>
<td>Does not support translucency</td>
</tr>
<tr>
<td>Always journal quality (suitable for publication)</td>
<td>Lines can appear different than on screen</td>
</tr>
<tr>
<td>Small file sizes for XY and 2-D output</td>
<td>Very large 3D output files</td>
</tr>
<tr>
<td></td>
<td>Not Web-friendly</td>
</tr>
<tr>
<td></td>
<td>Can be manipulated in third-party programs, but those programs are usually more expensive</td>
</tr>
<tr>
<td></td>
<td>Needs a PostScript printer for proper output</td>
</tr>
</tbody>
</table>

Table 25 - 1: Advantages and Disadvantages of Vector Graphics format

25 - 2.1 EPS Export

Encapsulated PostScript file (EPS) are PostScript files with additional commands that another program can use to determine the size of your plot. After you import your EPS file into another program, you can position it and usually resize it before printing.

If you try to send an EPS directly to a printer, it may not be positioned correctly on the page. Import the EPS to a word processor or page layout software to position it on the page. Use the PostScript export format to create files to send directly to a printer.

The Export dialog for EPS format has the following options:

- **Color** - Mark the checkbox to output in color. Otherwise output will be in grayscale.
- **Region** - Choose to export only the current frame, the smallest rectangle containing all frames, or the full work area.
- **Render Type** - If you choose Vector, the individual PostScript commands required to draw the image are saved. If you choose Image, a bitmap image is embedded in the file.

Vector mode generally results in a smaller file, and such graphics remain smooth when enlarged, but Image mode can accurately represent translucency or smooth color gradations, like other bitmap formats. In most cases, however, a TIFF, BMP, or PNG is a better choice than an Image EPS, as such files are more widely compatible.

When printing a vector EPS file to a non-PostScript printer, only a low-resolution preview image may be printed, depending on the operating system and...
print drivers. On Windows platforms, you must specify that the printer is a PostScript printer to print vector EPS files at their full quality. In most cases, Image mode EPSs will be printed correctly on any printer.

If you choose the Image render mode, the following option is available:

- Resolution - Enter the resolution of the image in dots per inch. Larger values create more accurate plots, but result in larger file sizes.

If you choose the Vector render mode, the following options are available:

- Extra Precision - Specify the number of decimal places to specify the size and position parameters in the vector-based EPS output. Larger values create more accurate plots, but result in larger file sizes.
- Force Extra Sorting for All 3D Frames - Toggle on to use extra sorting in all 3D frames. Overrides the setting in the Advanced 3D Control dialog. If selected, Tecplot 360 EX uses a slower, more accurate approach that detects and resolves problems with how, for example, intersecting objects are rendered.

- EPS Preview Image Settings - Tecplot 360 EX provides the following options for the preview image:
 - Type - The type of the preview image, or None.
 - None - No preview image information is included. If your application will not use such information, this minimizes the file size. However, the graphic will appear blank in most applications; it will appear correctly only when printed.
 - TIFF - Include a monochrome or grayscale TIFF preview image. This is the most common preview image format. You may specify an image depth for the preview image in the Depth drop-down.
 - EPSV2 - Include a monochrome (one bit per pixel) Encapsulated PostScript Version 2 preview image. This is also a common preview image type in EPS files.
 - FrameMaker - Include a monochrome preview image compatible with older versions of Adobe® FrameMaker®. This preview image type is rarely necessary, as newer versions of FrameMaker support TIFF previews.
 - Depth - Specifies the number of shades of gray for the preview by how many bits of information is used per pixel. The larger the number of bits per pixel, the larger the resulting file, but the larger the number of shades available. Your options are:
 - On/Off - One bit per pixel using an on/off strategy. All background pixels are made white (on), and all foreground pixels, black (off). This setting creates smaller files and is good for images with lots of background, such as line plots and contour lines.
 - 1 Bit/Pixel - One bit per pixel using gray scale values of pixels to determine black or white. Those pixels that are more than 50 percent gray are black; the rest are white. This setting creates small files that might be useful for a rough draft or a preview image.
 - 4 Bit/Pixel - Four bits per pixel resulting in sixteen levels of gray scale. This setting generates fairly small image files with a fair number of gray levels. This setting works well for most preview image purposes.
 - 8 Bit/Pixel - Eight bits per pixel resulting in 256 levels of gray. This setting is useful for full image representation, but the files generated by this setting can be large.
Vector Graphics Format

• **Width, Height** - The size of the preview image.

When using a Render Type of Image, these preview image width, height, and depth values are separate from the characteristics of the EPS image itself. The EPS image size is determined by the Resolution setting and the depth is determined automatically.

25 - 2.2 PostScript (PS) Export

The Export dialog allows you to export plots in PostScript (PS). This format is usually used for printing directly to a printer or print spooler. It is recommended that you use the Encapsulated PostScript (EPS) format for importing into, for example, page layout or illustration applications. See Section 25 - 2.1 “EPS Export” for details.

The Export dialog for the PostScript format has the following options:

- **Color** - Mark the checkbox to output in color. Otherwise output will be in grayscale.
- **Region** - Choose to export only the current frame, the smallest rectangle containing all frames, or the full work area.
- **Render Type** - If you choose Vector, the individual PostScript commands required to draw the image are saved. If you choose Image, a bitmap image is embedded in the file.

Vector mode generally results in a smaller file, and such graphics remain smooth when enlarged, but Image mode can accurately represent translucency or smooth color gradations, like other bitmap formats. If you choose the Image render mode, the following option is available:

- **Resolution** - Enter the resolution of the image in dots per inch. Larger values create more accurate plots, but result in larger file sizes.

If you choose the Vector render mode, the following options are available:

- **Extra Precision** - Specify the number of decimal places to specify the size and position parameters in the vector-based EPS output. Larger values create more accurate plots, but result in larger file sizes.
- **Force Extra Sorting for All 3D Frames** - Toggle on to use extra sorting in all 3D frames. Overrides the setting in the Advanced 3D Control dialog. If selected, Tecplot 360 EX uses a slower, more accurate approach that detects and resolves problems with how, for example, intersecting objects are rendered.

25 - 2.3 WMF Export

WMF (Windows Metafile) is a Microsoft vector graphics format widely accepted by Windows applications. Since WMFs are vector graphics, they can be easily resized by the importing application without the introduction of visual artifacts, but they cannot accurately represent plots with translucency or smooth color gradations.
Exporting

Selecting WMF from the Export Format drop-down displays WMF options:

- **Color** - Mark the checkbox to output in color. Otherwise output will be in grayscale.
- **Region** - Choose to export only the current frame, the smallest rectangle containing all frames, or the full work area.
- **Force Extra Sorting for All 3D Frames** - Toggle-on to use extra sorting in all 3D frames. Overrides the setting in the Advanced 3D Control dialog. If selected, Tecplot 360 EX uses a slower, more accurate approach that detects and resolves problems with how, for example, intersecting objects are rendered.

25 - 3 Image Format

Image output has the advantage of accurately representing translucency and smooth color gradations, but with the disadvantage of generally being larger than vector output, particularly when a high image resolution is specified, as may be necessary for printing. Image files are sometimes called raster or bit-mapped. Table 25 - 2 provides a summary of the advantages and disadvantages of image file formats.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Looks like the screen image, or better</td>
<td>Resolution-dependent (starts to lose quality if enlarged too much)</td>
</tr>
<tr>
<td>Adjustable export size</td>
<td>For professional-quality printing, images will be very large</td>
</tr>
<tr>
<td>Supports translucency</td>
<td></td>
</tr>
<tr>
<td>Relatively small file size</td>
<td></td>
</tr>
<tr>
<td>Easily managed by presentation packages</td>
<td></td>
</tr>
<tr>
<td>Web friendly</td>
<td></td>
</tr>
<tr>
<td>Easily manipulated in inexpensive 3rd party programs</td>
<td></td>
</tr>
<tr>
<td>Prints on any printer</td>
<td></td>
</tr>
</tbody>
</table>

Table 25 - 2: Advantages and Disadvantages of Image file formats

25 - 3.1 Exporting Images with a Specific DPI

A characteristic of image files is a dots-per-inch setting (DPI), which interacts with the pixel dimensions of the image to determine how large it will be printed. To customize the DPI of your exported image, first set the width of the frame to the size of the image that you wish to export, using the Edit Active Frame dialog (accessible by selecting “Edit Active Frame” from the Frame menu). Next, when actually exporting the image, multiply the frame width (in inches) by the desired DPI, and enter that number in the Enter Width field of the Export dialog.

For example, to export a 4 inch by 6 inch image at 300 DPI, set the frame dimensions to 4 inches by 6 inches, and then when exporting, enter a width of 1200 (4 times 300).

408
25 - 3.2 BMP Export

BMP (Bitmap) is an image format, and thus accurately represents plots with translucency and smooth color gradations. Although it originated on Windows, it is widely accepted on other platforms by many applications. However, it does not perform any compression, so file sizes are larger than more modern formats such as JPG and PNG.

BMP is always exported in color. The BMP export options are shown below.

- **Region** - Choose to export only the current frame, the smallest rectangle containing all frames, or the full work area.
- **Use Width of Image on Screen** - Select this option to generate an image file the same size as the current plot on the screen. This option is required if you use on-screen image rendering in the **Display Performance** dialog. See Section 30 - 3 "Performance Dialog" for details.
- **Enter Width** - Select this option to specify a width (in pixels) for the generated image. A larger width increases the quality of your image. However, the greater the width you specify, the longer it will take to export the image and the larger the exported file. This option is not available if you are using on-screen image rendering.
- **Antialiasing** - Select this option to smooth jagged edges in the image. See Section 25 - 4 "Antialiasing Images" for details.
- **Supersample Factor** - Control the amount of antialiasing used in the image. See Section 25 - 4 "Antialiasing Images" for details.
- **Convert to 256 Colors** - Select this option to generate an image with only 256 colors (down from a possible 16 million colors). Tecplot 360 EX selects the colors. This option can help reduce file size, but the results may be suboptimal; using it with transparency, smooth color gradations, or antialiasing may result in poor image quality.

25 - 3.3 JPEG Export

JPEG (Joint Photographic Experts Group) is an image format, and thus accurately represent plots with translucency and smooth color gradations. However, JPEG is a highly-compressed, “lossy” format, meaning the exported file may not be identical to the plot. This can result in poor image quality for some types of images. The advantage of JPEG is very small file sizes and near-universal acceptance on the Internet.
Exporting

JPEG supports different levels of compression, and Tecplot 360 EX allows you to control the image quality (and thus, inversely, the file size).

JPEG images are always exported in color. When you select JPEG in the Export dialog, you have the following options:

- **Region** - Choose to export only the current frame, the smallest rectangle containing all frames, or the full work area.
- **Use Width of Image on Screen** - Select this option to generate an image file the same size as the current plot on the screen. This option is required if you use on-screen image rendering in the Display Performance dialog. See Section 30 - 3 "Performance Dialog" for details.
- **Enter Width** - Select this option to specify a width (in pixels) for the generated image. A larger width increases the quality of your image. However, the greater the width you specify, the longer it will take to export the image and the larger the exported file. This option is not available if you are using on-screen image rendering.
- **Antialiasing** - Select this option to smooth jagged edges in the image. See Section 25 - 4 "Antialiasing Images" for details.
 - **Supersample Factor** - Control the amount of antialiasing used in the image. See Section 25 - 4 "Antialiasing Images" for details.
- **Encoding** - Choose an encoding method for the JPEG file.
 - **Standard** - Encodes a JPEG one line at a time, starting at the top line. In most Web browsers, this means nothing appears until the image has been completely loaded.
 - **Progressive** - Encodes the JPG in two passes, first at lower quality and then at higher quality. In a Web browser, this means that a lower-quality version of the image appears quickly, then is replaced with a larger version of the image when the file has been completely loaded.

Given the same Quality level, **Standard** encoded JPEG files generally look better than equivalent **Progressive** encoded JPEG files. However, they have a larger file size.

- **Quality** - Select the quality of JPEG image. Higher quality settings produce larger files and better looking exported images. Lower quality settings produce smaller files. A quality setting of around 75 is usually optimal; settings much below this may visibly degrade image appearance, while higher settings usually do not provide much visible improvement but create larger files.
25 - 3.4 PNG Export

PNG (Portable Network Graphics) is an image format, and thus accurately represent plots with translucency and smooth color gradations. Unlike JPEG images, PNGs can exactly represent a plot without losing any nuance.

PNG images are always exported in color. When you select PNG in the Export dialog, you have the following options:

- **Region** - Choose to export only the current frame, the smallest rectangle containing all frames, or the full work area.

- **Use Width of Image on Screen** - Select this option to generate an image file the same size as the current plot on the screen. This option is required if you use on-screen image rendering in the Display Performance dialog. See Section 30 - 3 “Performance Dialog” for details.

- **Enter Width** - Select this option to specify a width (in pixels) for the generated image. A larger width increases the quality of your image. However, the greater the width you specify, the longer it will take to export the image and the larger the exported file. This option is not available if you are using on-screen image rendering.

- **Antialiasing** - Select this option to smooth jagged edges in the image. See Section 25 - 4 “Antialiasing Images” for details.

- **Supersample Factor** - Control the amount of antialiasing used in the image. See Section 25 - 4 “Antialiasing Images” for details.

- **Convert to 256 Colors** - Select this option to generate an image with only 256 colors (down from a possible 16 million colors). Tecplot 360 EX selects the colors. This option can help reduce file size, but the results may be suboptimal; using it with transparency, smooth color gradations, or antialiasing may result in poor image quality.
TIFF (Tagged Image File Format) is an image format, and thus accurately represent plots with translucency and smooth color gradations. Tecplot 360 EX generates both color and gray-scale TIFF images.

When you select TIFF in the Export dialog, you have the following options:

- **Color** - Mark the checkbox to output in color. Otherwise output will be in grayscale.
- **Region** - Choose to export only the current frame, the smallest rectangle containing all frames, or the full work area.
- **Use Width of Image on Screen** - Select this option to generate an image file the same size as the current plot on the screen. This option is required if you use on-screen image rendering in the Display Performance dialog. See Section 30 - 3 “Performance Dialog” for details.
- **Enter Width** - Select this option to specify a width (in pixels) for the generated image. A larger width increases the quality of your image. However, the greater the width you specify, the longer it will take to export the image and the larger the exported file. This option is not available if you are using on-screen image rendering.
- **Antialiasing** - Select this option to smooth jagged edges in the image. See Section 25 - 4 “Antialiasing Images” for details.
- **Supersample Factor** - Control the amount of antialiasing used in the image. See Section 25 - 4 “Antialiasing Images” for details.
- **Convert to 256 Colors** - Select this option to generate an image with only 256 colors (down from a possible 16 million colors). Tecplot 360 EX selects the colors. This option can help reduce file size, but the results may be suboptimal; using it with transparency, smooth color gradations, or antialiasing may result in poor image quality.
- **Grayscale Depth** - For grayscale images, this specifies the number of shades of gray by how many bits of gray-scale information is used per pixel. The larger the number of bits per pixel, the larger the resulting file. Your options are:
 - **On/Off** - One bit per pixel using an on/off strategy. All background pixels are made white (on), and all foreground pixels, black (off). This setting creates small files and is good for images with lots of background, such as line plots and contour lines.
 - **1 Bit/Pixel** - One bit per pixel using gray scale values of pixels to determine black or white. Those pixels that are more than 50 percent gray are black; the rest are white. This setting creates small files that might be useful for a rough draft or a preview image.
 - **4 Bit/Pixel** - Four bits per pixel resulting in sixteen levels of gray scale. This setting generates fairly small image files with a fair number of gray levels. This setting works well for most preview image purposes.
 - **8 Bit/ Pixel** - Eight bits per pixel resulting in 256 levels of gray. This setting is useful for full image representation, but the files generated by this setting can be large.
25 - 4 Antialiasing Images

Antialiasing smooths jagged edges on text, lines, and edges of image output formats by the process of supersampling. A large intermediate image is rendered and then reduced to the final image size. Each pixel on the final image is created from multiple rendered pixels. The width and height of the intermediate image are the width and height of the final image times some scale factor. This scale factor is called the Supersample Factor. You can use values from 2 to 16. Factors greater than 3 are seldom necessary. Large scale factors take a lot more time and memory. Some graphics cards limit the dimensions of rendered images to a maximum of 2048x2048 or 4096x4096 pixels, and thus Tecplot 360 EX cannot antialias if the intermediate image would be larger than this limit. Some graphics drivers do not report an error in such situations, instead producing blank or garbled images.

Antialiasing uses many colors. If you are exporting with the Convert to 256 Colors option activated, antialiasing works for plots with a very limited selection of colors (like a red mesh on a black field). Otherwise, antialiasing to 256 colors wastes time and may decrease plot quality.

Using animation formats can amplify the antialiasing and 256-color problem, as the same 256 colors must generally be used for colors in all frames of the animation. For these formats, try a test animation of a few steps with antialiasing on before creating the entire animation.

25 - 5 Clipboard Exporting to Other Applications

In general, the Cut, Copy, and Paste commands on the Edit menu work only within Tecplot 360 EX. However, it is possible to copy the plot in a frame to the clipboard as an image using the following procedure:

1. With the selector tool active, click the frame border to select the frame. Black dots appear at the frame's corners and at the midpoints of its edges.
2. From the Edit menu, choose Copy.

An image of the frame's plot is now on your system clipboard and can be pasted into documents in other applications. Note that the image captures the plot exactly as it appears on the screen, including its size. Text may be copied and pasted into other applications using a similar procedure. Select the text object, choose Edit>Copy, then paste the text into the other application.
Exporting
Part 6 Scripting
Macros

Tecplot 360 EX provides two methods of scripting or automating your workflow: macros and batch processing. This chapter focuses on the Tecplot 360 EX menu options for recording and playing back macros. The Scripting Guide describes the Tecplot 360 EX macro language in detail.

Macros are very useful for performing repetitive operations such as setting up frames, reading in data files and layout files, manipulating data, and creating plots. Macros can also be used to drive Tecplot 360 EX batch jobs. For information on batch processing, see Chapter 27: “Batch Processing”.

26 - 1 Macro Creation

Tecplot 360 EX’s Macro Recorder records a macro as you perform a sequence of actions interactively. Macros can be recorded in either Tecplot (.mcr) or PyTecplot Python (.py) format. PyTecplot Python scripts run outside of Tecplot 360 EX, and may be run from either the command line or any Python IDE. See the PyTecplot Guide for more information.

After recording your macro, you can edit your macro file with a plain text editor to remove redundant operations, compress repetitive actions into loops, replace references to files with variable names, and otherwise modify the macro to make it more generic and flexible.

To record a macro with the Macro Recorder dialog, select “Record Macro” or “Record PyTecplot” from the Scripting menu. Specify a macro file name in the Write Macro File (.mcr) or Write Script (.py) dialog and click Save to initiate the recording. The Macro Recorder dialog remains open during the recording session.

Auto Redraw is disabled during macro recording. If necessary, you can manually redraw your plot by clicking the Redraw button in the Plot sidebar.
Macros

While recording macros, you can use any of the following buttons on the Macro Recorder dialog to add specific macro commands to your macro:

- **Insert "Pause"** - Adds a “pause” command to the macro. When you play a macro including a pause command, Tecplot 360 EX displays a message box when it reaches the pause command, and waits for you to click OK before continuing to process the macro.

- **Insert "Graphics Off"** - Adds a “graphics off” command to the macro. When you play a macro containing a “graphics off” command, Tecplot 360 EX stops displaying graphics in the workspace from the “graphics off” command until a “graphics on” command is encountered.

- **Insert "Graphics On"** - Adds a “graphics on” command to the macro.

- **Insert Raw Command** - Brings up a dialog in which you can enter any valid Tecplot macro command. For example, you can add "$1!LOO 10" at the start of a section you want to repeat 10 times, then "$1!ENDLOOP" at the end. See the Scripting Guide for information on the Tecplot 360 EX macro language.

- **Stop Recording** - Select when you have completed the sequence of actions you want recorded.

The commands in a macro file typically rely on Tecplot 360 EX being in a particular state. It is a good practice to use commands at the start of a macro that force Tecplot 360 EX into a known state. For example, the $1!NEWLAYOUT command deletes all data sets and frames and creates a single empty frame with a default size and position.

Macros are guaranteed to be forward compatible (i.e. work with future releases of Tecplot 360 EX) only if the macro begins with a new layout or stylesheet. Refer to the Scripting Guide for more information.

26 - 1.1 Macro Functions

When editing a macro file in a text editor, you can add macro function definitions and macro function calls. Macro functions have the following form:

```plaintext
$!MACROFUNCTION
  NAME = functionName
  ...
$!ENDMACROFUNCTION
```

418
Between $!MACROFUNCTION$ and $!ENDMACROFUNCTION$, you can include any legal macro command except $!MACROFUNCTION$. For example, the following macro function turns on the Contour zone layer, turns off the Mesh zone layer, sets the contour plot type to Both Lines and Flood for zones 1, 2 and 3, then chooses gray scale color mapping:

```
$!MACROFUNCTION
NAME = "graycontour"
RETAIN = Yes
$!FIELDLAYERS SHOWCONTOUR = Yes
$!FIELDLAYERS SHOWMESH = No
$!FIELDMAP [1-3] CONTOUR{CONTOURTYPE = BOTH,LINESANDFLOOD}
$!GLOBALCONTOUR 1 COLORMAPNAME = "Grayscale"
$!REDRAW
$!ENDMACROFUNCTION
```

The RETAIN parameter tells Tecplot 360 EX to retain the macro function definition for use in subsequent macro calls; this allows you to define a macro function once in some macro you load every time you run Tecplot 360 EX, and continue to use it throughout your Tecplot 360 EX session.

Use the $!RUNMACROFUNCTION$ macro command to call your macro function. For example, to call the “graycontour” macro function defined above, use the following macro command:

```
$!RUNMACROFUNCTION "graycontour"
```

You can use the $!RUNMACROFUNCTION$ command within other macro functions; calls may be nested up to ten deep. To access parameters from within a macro function use “$!n!$”, where n is the parameter number (do not include the double quotes). For example, the following function uses two parameters for the assignments to SHOWCONTOUR and SHOWMESH:

```
$!MACROFUNCTION
NAME = "AssignContourAndMesh"
$!FIELDLAYERS SHOWCONTOUR = |1|
$!FIELDLAYERS SHOWMESH = |2|
$!ENDMACROFUNCTION
```

```
$!RUNMACROFUNCTION "AssignContourAndMesh" (YES,NO)
```

26 - 1.2 Macro Linking to Geometries

Each geometry you create can be linked to a macro function. This macro function is called whenever the user holds down the control key and clicks the right mouse button on the geometry. Macro functions are specified with the Link to Macro function field in the Geometry dialog. Only one macro function may be specified for each geometry.

The macro function must be defined in a macro file using the $!MACROFUNCTION$ instruction as described in "Macro Functions" on page 418. The macro file containing the variable must then be executed so that the function is loaded into memory and available for use in the current Tecplot 360 EX session.

A convenient way to handle this is to record a macro that opens the layout that contains the linked objects and then edit this macro using a text editor to also include the necessary macro functions. You can also simply include the macro functions in your `tecplot.mcr` file.
Macros

26 - 2 Macro Playback
Once you have created a macro file, you have three methods in Tecplot 360 EX for playing it back:

- **From the command line** - You can play a macro when Tecplot 360 EX is launched by including the name of the macro file on the command line, i.e.:
  ```
  tecplot mymacro.mcr
  ```
 If your macro file does not have the `.mcr` extension, run Tecplot 360 EX with the macro file by including the `-p` flag on the command line, such as:
  ```
  tecplot -p mymacro.mmm
  ```

- **From the Tecplot 360 EX interface** - You can play a macro from within Tecplot 360 EX by using the "Play Macro/Script" option on the Scripting menu.

- **Using the Macro Debugger** - Use the Macro Debugger (accessed via Scripting>View/Debug Macro) to open, inspect, step through, and debug your macro file. See Section 26 - 3 "Macro Debugger" for more information.

- **Using the Quick Macro Panel** - The Quick Macro Panel (accessed via the Scripting menu) allows you to quickly play a macro function by clicking on the button in the panel that is linked to that macro function. See Section 26 - 2.1 "Quick Macro Panel" for more information.

On Windows operating systems, you can also launch Tecplot 360 EX and run a macro by dragging and dropping a macro file onto the Tecplot 360 EX icon. However, in this case, the macro file must have the `.mcr` extension. Otherwise, the file will be treated as an ASCII data file.

26 - 2.1 Quick Macro Panel
The Quick Macro Panel, accessible by selecting "Quick Macros" from the Scripting menu, is a sidebar for playing your favorite or frequently-used macros. It initially appears docked to the right side of the main Tecplot 360 EX window, but like the other sidebars, it can be dragged out of the workspace to become a floating window, or docked with one or more other sidebars to suit your working habits. (See "Sidebars" on page 20 for more information on working with sidebars.)

This panel comes with a number of useful macro functions already defined. To run any of these macros, select it in the list, then click the Play button, or simply double-click the macro name.

The Quick Macro Panel is linked to a special macro file that should contain only macro function definitions (`$!MACROFUNCTION` instructions). The macro definitions having `SHOWINMACROPANEL = TRUE` appear in the Quick Macro Panel. Other functions may be defined in this file without this flag; these can be called by the macro(s) displayed in the panel. You may also use the `$!INCLUDEMACRO` instruction to include macro instructions from other files into the quick macro file.

For information on how to load a quick macro file, see Section 30 - 1 "Custom Files loaded on Startup".
Macro Debugger

Use the Macro Debugger, accessed via Scripting-View/Debug Macro, to step through and debug a macro file. This dialog allows you to add and delete breakpoints, view and set watch variables, and view the call stack.

The Macro Debugger displays the text of the currently loaded macro file at the top of the dialog in the Macro Source area. The black arrow \(\uparrow\) marks the line about to be executed; it moves to the next command after the current command is executed. Below this is a second area (Expanded View) showing the complete command about to be executed, as many macro commands are lengthy and may not be readable in their entirety in the Macro Source area.

The Macro Debugger has the following buttons in its toolbar:

- \(\text{Load a Macro file}\) - Loads a macro file using the Open Macro dialog, in which you can specify which macro file to load. Tecplot macro files typically have the extension .mcr. Once you have loaded a macro file, it stays loaded in the Macro Debugger until you load a different one.
- \(\text{Continue}\) - Plays the macro without stopping after each step, until the macro finishes or the Macro Debugger encounters a breakpoint.
- \(\text{Step buttons}\) - These three related buttons help you step through your macro line by line, pausing after each instruction has been processed. Checking the values of variables after each step is very helpful in finding and fixing problems. These buttons have slightly different functions, described below.
 - \(\text{Step Into}\) - Executes the current macro command. When a \texttt{$!RUNMACROFUNCTION}\) command is encountered, the Macro Viewer steps into the called function, so it too can be executed line by line.
 - \(\text{Step Over}\) - Executes the current macro command. When a \texttt{$!RUNMACROFUNCTION}\) command is encountered, the entire function is processed as a single operation, instead of allowing you to step through it line by line.
This is useful for functions that you have already verified to be working correctly and/or do not wish to step through, especially long ones.

- **Step Out** - Executes the rest of the current function at full speed, rather than line by line, until the end of the function ($ENDMACROFUNCTION) is encountered, then resumes single-stepping at the line after the $RUNMACROFUNCTION instruction that called the function.

 This is useful when you have verified that a function is working correctly, and don’t need to continue stepping through it (especially in functions with loops) or have accidentally stepped into a function you don’t want to step through.

- **Reset** - Stops the running macro, if any, and resets the macro to start running at the beginning again.

 If your macro relies on Tecplot 360 EX being in a particular state when it starts processing (that is, it does not begin with loading or creating a layout), make sure Tecplot 360 EX is in this state before you click Reset. Otherwise, the results of the macro may not be what you expect.

A convenient way to handle state with macro resets is to save a layout before beginning debugging, then reload this layout if you need to reset.

The Macro Debugger has the following three areas at the bottom of the dialog. Watch Variables and Breakpoints share the same space; use the provided tabs to switch between them.

- **Watch Variables** - Displays the values of selected macro variables as you step through the code, and allows you to add and remove variables to be watched. See Watching Variables.
- **Breakpoints** - Displays the breakpoints set in your macro and allows you to delete any or all of them easily. See Using Breakpoints.
- **Call Stack** - Displays all function calls currently executing. When one function calls another, which calls another, and so on, this area displays the name of all these functions in the order they were called. The name main represents the top-level script (instructions outside of any functions).

26 - 3.1 Watching Variables

The Watch Variable panel at the bottom of the Macro Debugger allow you to set variables to be displayed while your macro runs. You can add a variable to be watched by choosing it from the pop-up menu here. To stop a variable from being watched, click it in the list of watched variables, then click the delete (trash) icon.

26 - 3.2 Using Breakpoints

A breakpoint is a point in your code where you wish to pause execution, usually just before some macro instructions you are having trouble with. Using the Continue button, your macro runs at full speed until it reaches a breakpoint. You can then inspect variables or the call stack and see the next several lines to be executed, then step through the macro a line at a time using the appropriate Step buttons in the toolbar to see how they behave.

Breakpoints are shown as red discs to the left of each line of code in the Macro Source field. To set a breakpoint at a particular line of your macro, click to the
left of that line. A red disc appears next to that line to indicate that execution will pause just before that line is executed. You can remove the breakpoint by clicking again.

The Breakpoints area at the bottom of the Macro Debugger dialog display information about where each breakpoint is set: the function it's in ("main" if it's outside a function), its line number, and the macro command. You can delete breakpoints from this area by selecting them and clicking **Delete Selected Breakpoints**. (This is the fastest way to delete all breakpoints.)
Macros
Batch Processing

You can run Tecplot 360 EX in batch mode to create plots without displaying any graphics to the screen. This saves time when processing multiple files for printing or export. In batch mode, Tecplot 360 EX can be executed locally on your workstation computer or remotely using a terminal (Linux only). Under Linux, you must use the Mesa version of Tecplot 360 EX if your macro creates export files in bitmap formats. (The OpenGL version requires screen resources not available in batch mode.)

27 - 1 Batch Processing Setup

To prepare for batch processing, follow these basic steps:

1. Create a macro file to control the batch processing. You may do this either by using Scripting>Record Macro and recording a Tecplot 360 EX session, or by using any text editor. See Chapter 26: “Macros”.
2. Create layout and stylesheet files, as necessary.
3. Prepare data files.
4. Debug the macro file by running Tecplot 360 EX while not in batch mode.

When you launch Tecplot 360 EX in batch mode, you provide the name of a macro file to execute. The minimal command to launch Tecplot 360 EX in batch mode is as follows:

```
tec360 -b -p macrofile
```

The -b flag instructs Tecplot 360 EX to run in batch mode and the -p macrofile tells Tecplot 360 EX the name of the macro file to execute.

27 - 1.1 Batch Mode and Windows

Under Windows, invoking Tecplot 360 EX from the command line or in a .bat file returns immediately rather than waiting for the application to finish working, as is normal on Linux and Mac OS X.
Batch Processing

When using batch mode, however, you generally want to wait until Tecplot 360 EX has finished one operation before proceeding with the next. To do this, precede the command with `start /wait`. For example:

```
start /wait tec360 -b -p macrofile
```

27 - 1.2 Batch Mode and Mac

When running batch mode on a Mac, the full path to the executable must be called:

```
"/Applications/Tecplot 360 EX 2018 R2/Tecplot 360 EX 2018 R2.app/Contents/MacOS/Tecplot 360 EX 2018 R2" -b mymacro.mcr
```

If you are running many files in batch mode, it may be helpful to set up an alias for the full executable path. To set up an alias, type the following in `~/.bashrc`:

```
alias tec360='"/Applications/Tecplot 360 EX 2018 R2/Tecplot 360 EX 2018 R2.app/Contents/MacOS/Tecplot 360 EX 2018 R2"
```

With the alias defined, running macros in batch mode becomes easier. Simply add the `-b` flag followed by the macro you wish to use:

```
tec360 -b mymacro.mcr
```

For more information on setting an alias and running Tecplot from the command line in Mac see the [Installation Guide](#).

27 - 2 Batch Processing Using a Layout File

Combining layout files with batch processing is both powerful and flexible, and is also the recommended procedure. With layout files, you can organize a plot using one or more frames in a single file. The layout file manages datasets and can be altered on the fly, either on the command line or within a macro that loads the layout file.

For example, to do the following sequence of tasks in batch mode:

- Load a data file from a user-supplied file name.
- Create a specific style of plot.
- Create a PostScript file of the plot.

You can set up the batch script as follows:

1. Obtain a representative data file to be plotted.
2. Create a layout of the style of plot you want. (For this example, name the file `batch.lay`).
3. Use a text editor to create the following macro (For this example call this macro `batch.mcr`):

```
# $!MC 1410
$!READDATASET
$!EXPORTSETUP ExportFormat = PS
$!PRINTSETUP PALETTE = MONOCHROME
$!EXPORTSETUP PRINTRENDERTYPE = VECTOR
$!export
$!exportregion = CURRENTFRAME
$!quit
```

4. Use the following command to run the job in batch mode:
Multiple Data File Processing

In Section 27 - 2 "Batch Processing Using a Layout File", we set up Tecplot 360 EX to process a user-supplied data file (or files) and create a single output file. If the above procedure is to be repeated for a large number of input files (one at a time), you can do this by using a loop: either outside Tecplot 360 EX in the operating system using your shell's looping constructs, or within Tecplot 360 EX using the flow-of-control commands in the Tecplot macro language.

27 - 3.1 Looping Outside Tecplot 360 EX

The following examples show the command files for launching Tecplot 360 EX in an operating system loop on two different operating systems. Tecplot 360 EX processes five data files named dnn.plt and creates ten output files named dnn.out where nn goes from 1 to 10.

Looping Outside Tecplot 360 EX (Linux): Create a shell script with the following commands:

```bash
#!/bin/sh
n=1
while test $n -le 10
  do
tec360 -b -p batch.mcr -y d$n.out batch.lay d$n.plt
  n=`expr $n+1`
done
```

Looping Outside Tecplot 360 EX (Windows): Create a batch file with the following commands:

```bash
for %%f in (d1 d2 d3 d4 d5 d6 d7 d8 d9 d10)
do tec360 -b -p batch.mcr -y %%f.out batch.lay %%f.plt
```

27 - 3.2 Looping Inside Tecplot 360 EX

In Section 27 - 3.1 “Looping Outside Tecplot 360 EX” we set up Tecplot 360 EX to process multiple data files using the shell to do the looping. There are two drawbacks to this procedure:

- The shell languages are not portable between different operating systems.
- Tecplot 360 EX must be repeatedly started and stopped to process each dataset.

A more efficient approach is to loop through the data files inside Tecplot 360 EX. Here, the layout file and the data files are all named within the macro. The command line in this example is simple, as follows:

`tec360 -b -p batch.mcr`
Batch Processing

The macro is as follows:

```
$!OPENLAYOUT "batch.lay"
ALTDATALOADINSTRUCTIONS = "d|LOOP|.plt"
$!EXPORTSETUP PRINTRENDERTYPE = VECTOR
$!EXPORTSETUP EXPORTFNAME = "d|LOOP|.out"
$!EXPORT
$!QUIT
```

The $!OPENLAYOUT command loads in batch.lay but replaces the data file referenced in the layout with the file names in the ALTDATALOADINSTRUCTIONS sub-command. The $!EXPORTSETUP command is used in two places. Initially it is used to set the export format. Later it is used just to change the name of the file to export to. The $!EXPORT command does the actual exporting.

If you want to make many different plots using the same dataset, stylesheets will be more efficient than layout files.

27 - 4 Batch Processing Diagnostics

Each time Tecplot 360 EX is run in batch mode, it creates a file defined by the name in the BATCHLOGFILE environment variable, or, if the environment variable is not defined, by a file named batch.log in the directory where Tecplot 360 EX was started. If the name given in the BATCHLOGFILE environment variable is a relative path, the directory name where Tecplot 360 EX was started is prefixed. A running commentary on actions performed in Tecplot 360 EX, as well as warning and error messages, are sent to the batch.log file.

27 - 5 Batch Converting to SZL Format

Two of Tecplot 360 EX’s command line options, -o and -convert, allow you to more easily convert your existing datasets to SZL, Tecplot’s high-performance subzone data format (filename extension .szplt). Since it is command-line driven, this capability is suitable for converting large numbers of files without user intervention, or as a step in solver postprocessing.

Tecplot 360 EX does not require a license when launched with either of these options, so you can perform data file conversion on any available workstation without concern. Only a Tecplot 360 EX installation is required.

In a restricted batch session started with -o or -convert, Tecplot 360 EX can read data files (using any of its data loader add-ons) and write data in SZL format, but cannot perform most other operations. As with all batch operations, there is no graphical user interface; batch conversion is strictly a command-line function. Most of the time, you’ll want to use the -o option for SZL conversion. See “Writing SZL Files With Macros” on page 432 for more information on the use cases for the -convert option.

Loading Data Files by Name

The -o option outputs any loaded data to the specified .szplt output file. Just add -o followed by the output filename or path to whatever command line you would normally use to load your data. Tecplot 360 EX will then write that data in SZL format (and exit) instead of displaying a plot in its workspace. For example, if you usually start exploring data in two Tecplot .plt files using the following command line:
Batch Converting to SZL Format

You can instead have Tecplot 360 EX convert those data files to a single .szplt file using the following command line:

tec360 file1.plt file2.plt -o output.szplt

If your data is in a non-Tecplot format, you may or may not be able to load it all into Tecplot 360 EX using a single, simple command line of the type shown. Some formats (e.g. CGNS) support loading multiple files, but require that the files all be part of a single case, and require additional cases to be appended via further load operations. Other loaders do not support multiple files at all and require all loads after the first to be appended. In such cases, you can record a macro to load your data.

Loading Data Files with Macros

Create a macro to load some or all of your data when one or more of the following apply:

• The data cannot be loaded using a single command line because it is in multiple files and the required loader does not support loading all of them using a single command line.
• The data files do not have filenames that allow Tecplot 360 EX to unambiguously determine the correct loader for the data. (In some cases, though, you can simply rename the files.)
• You need to set the loader's advanced options to successfully load the data. In other words, in the Load Data dialog, you use the Open with Advanced Options command (accessed by clicking the menu triangle next to the Open button) or mark the Advanced Options checkbox.

Simply record a macro that loads the data, using the procedure you normally use with the Tecplot 360 EX graphical user interface. See Section 26.1 "Macro Creation" for more information on recording macros.

The loading procedure you record can include multiple load operations using the append option, any number of different file formats, and selection of advanced loader options. After you have recorded the macro, specify it on the command line when invoking tec360. As with the previous case, simply add -o followed by the name of the SZL file to be created:

tec360 loaddata.mcr -o output.szplt

Your recorded macro contains fixed file names and directory paths for the files you loaded, which makes it difficult to use the macro with other data files. We will see how to address this with a few simple changes to the macro shortly.

Using Multiple Macros to Load Files

Tecplot 360 EX allows you to specify multiple macros on the command line, which will be executed in the order they appear in the command. Instead of creating one macro that loads multiple files, then, you could record multiple macros, each loading one data file, then specify just the ones you actually need for a given project. For example:

tec360 loaddata1.mcr loaddata2.mcr loaddata3.mcr -o output.szplt

Combined with the techniques in the following sections to allow the macros to load data files other than the ones used when recording the macro, this lets you create a macro "tool set" for converting the various kinds of files you typically work with.

There is one hitch to using multiple macros on the command line. When you record a load operation, the resulting macro may include an instruction telling the loader to erase any data that has already been loaded. When you attempt to load your data, the second macro file specified will erase the data loaded by the first, and so on for the third, fourth, etc., wasting time and making it seem like only the last macro loaded anything.

Fortunately, this is easy to fix. Simply load the macro into any text editor (Notepad.exe will do) and find any lines that say READDATAOPTION = NEW. Change it to say READDATAOPTION = APPEND instead. Such a macro will
still work fine even when specified first on the command line, because each conversion is a new Tecplot 360 EX session that begins with no data loaded.

Mixing Macros and Data Files

Macros are just another kind of data file: one that Tecplot 360 EX happens to execute as instructions. For this reason, it is possible to mix data files and macros on the command line to load your data, using macros only for files that can’t be loaded by specifying them directly. Files are processed in the order they appear on the command line. For example:

tec360 cube.plt loadcircle.mcr -o output.szplt

This loads cube.plt (a regular Tecplot data file) and then executes loadcircle.mcr, which, presumably, loads another data file (or even multiple files). The loaded data are then written to output.szplt.

Using Relative Paths

As we mentioned, the paths of the files you loaded and saved become a part of recorded macros. The macro will then always load input files with the same names, and in the same directory, as the file(s) used when the macro was recorded. The output file, similarly, is always given exactly the same name and stored in the same directory as the one you wrote while recording the macro.

If you have set up your simulation process so that the solver always produces an output file of the same name, but in a different directory for each case, you can simply edit the recorded macro to use relative paths. Then the macro will work with files in the current directory, whatever it may be, and you can simply change to the directory that contains the file you wish to convert before performing the conversion.

For example, here is a simple macro, loadcube.mcr, that we recorded to load a single .plt file. (A real macro would probably be longer, since you don’t even need a macro to load a .plt file, but let’s keep it simple.)

```!
#!MC 1410
$!VarSet |MFBD| = 'C:\Users\kelvin\Desktop'
$!READDATASET  "|MFBD|\cube.plt"
READDATAOPTION = NEW
RESETSTYLE = YES
VARILOADMODE = BYNAME
ASSIGNSTRANDIDS = YES
VARNAMELIST = '"X" "Y" "Z"'
$!RemoveVar |MFBD|
```

All recorded macros contain a definition of the variable MFBD, which refers to the current (or working) directory that was in effect when the macro was recorded. Since we loaded cube.plt from our Desktop folder, which was also the working directory, the macro uses the MFBD variable in the READDATASET command. If we had loaded our data file from a directory other than the working directory, the READDATASET command would have the full path (for example, on Windows, it would probably start with C:\). Here’s what the macro looks like when cube.plt is in C:\:

```!
#!MC 1410
$!VarSet |MFBD| = 'C:\Users\kelvin\Desktop'
$!READDATASET  'C:\\cube.plt'
READDATAOPTION = NEW
RESETSTYLE = YES
VARILOADMODE = BYNAME
ASSIGNSTRANDIDS = YES
VARNAMELIST = '"X" "Y" "Z"'
$!RemoveVar |MFBD|
```

We don’t actually need the MFBD variable for our purposes, so we can remove the VarSet command and the corresponding RemoveVar command. (It doesn’t hurt to leave them, however.) We will also remove everything but the filename from the READDATASET and WRITEDATASET commands. We will also change the READDATAOPTION to APPEND, as suggested in the preceding section. Here is the macro after these changes.

```!
#!MC 1410
$!READDATASET  '"cube.plt"'
```
Batch Converting to SZL Format

- **READDATARTITION = NEW**
- **RESETSTYLE = YES**
- **VARLOADMODE = BYNAME**
- **ASSIGNSTRANDIDS = YES**
- **VARNAMELIST = "X" "Y" "Z"**

This macro now reads the `cube.plt` file from the current (or working) directory. After saving it as `loadcube.mcr`, you can invoke the conversion as follows:

```bash
cd C:/path/to/files
tec360 C:/path/to/loadcube.mcr -o output.szplt
```

Note that, when invoking the conversion, we must specify the full path to `convert.mcr` since it is not in the working directory. If the Tecplot 360 EX bin directory is not in your system’s PATH variable, you must also supply the full path to the `tec360` executable. (For simplicity, our examples assume `tec360` is in your PATH.)

Using Environment Variables in Loader Macros

When the data files you want to convert may have different names, but are in the same format and need the same loader options, it is possible to write a macro that accepts paths specified outside of the macro. The most straightforward way to do this is to set environment variables before launching Tecplot 360 EX. The macro file then uses these environment variables as the input file path(s). Here, we will use the variable `INFILE` with the macro from the preceding section. Since it will no longer load only `cube.plt`, we will name the macro `loaddata.mcr` rather than `loadcube.mcr`.

```bash
#!MC 1410
$!READDATASET "|$INFILE|" ' READDATAT RITION = APPEND
RESETSTYLE = YES
VARLOADMODE = BYNAME
ASSIGNSTRANDIDS = YES
VARNAMELIST = "X" "Y" "Z"
$!EXTENDEDCOMMAND
COMMANDPROCESSORID = 'Tecplot Subzone Data Tools'
COMMAND = 'WRITEDATASET FILENAME="|$OUTFILE|"'
```

To invoke it, set the environment variables before starting the conversion:

Windows:

```bash
SET INFILE=C:\path\to\cube.plt
tec360 C:\path\to\loaddata.mcr -o output.szplt
```

Linux or Mac OS X (bash shell):

```bash
INFILE=/path/to/cube.plt
tec360 /path/to/loaddata.mcr -o output.szplt
```

Either absolute or relative paths may be used in environment variables; relative paths are, as always, relative to the current or working directory.

If your file loading process requires you to specify more than one input file to a macro, simply add an `INFILE` variable for each, appending numbers such as `INFILE1`, `INFILE2`, etc. and change your macro accordingly. If you will be using multiple macros, use different variables in each so that they don’t conflict.

A Batch File for Conversion

The command line instructions in the preceding section can be put into a batch file (Windows) or a shell script (Linux or Mac OS X) so that you can specify all the necessary paths in a single command line. This file (`convert.bat` or `convert.sh`) can be placed in the same directory as your `loaddata.mcr` from the preceding section, as long as that directory is in your system’s PATH.

Windows — `convert.bat`:

```bash
SET INFILE=1
tec360 loaddata.mcr -o %2
```

Linux — `convert.sh`:

```bash
INFILE=1
```
Batch Processing

Now you may invoke it as follows:

convert.bat C:\path\to\input\file.plt C:\path\to\output\file.szplt

Linux or Mac OS — convert.sh:

```bash
#!/usr/bin/env bash
INFILE=$1
tec360 loaddata.mcr -o $2
```

After creating `convert.sh`, execute the command below to make it executable:

```bash
chmod +x convert.sh
```

The script may then be invoked as follows:

```bash
convert.sh /path/to/input/file.plt /path/to/output/file.szplt
```

The same technique can be used with additional macro files and additional filenames; you will simply need to set the environment variable(s) needed by each macro based on the arguments to the script (%1, %2, etc. in Windows batch files or $1, $2, etc. in Linux or Mac OS X bash scripts).

Writing SZL Files With Macros

The principal difference between `-o` and `-convert` is that when you use `-o`, Tecplot 360 EX writes the SZL data file for you, whereas with `-convert`, you write the data file using a macro. All that we have already learned about using macros still applies; the following are valid scenarios:

- A single macro loads all the data and also writes a .szplt file
- You load some data by specifying the filenames on the command line and the rest by specifying one or more macros, the last of which also writes the .szplt file
- Same as above, except the macro that writes the .szplt file is a separate macro
- A group of macros reads multiple groups of data files and writes multiple .szplt files in a single Tecplot 360 EX operation (READDATAOPTION = NEW is used to start fresh for each group of loaded files)
- Any other combination of data files and macros you can imagine

You can create a macro file that writes a .szplt file by recording a save operation, but here, for the record, is the necessary command:

```bash
#!/MC 1410
$!EXTENDECTRANSMISSION
COMMANDPROCESSORID = 'Tecplot Subzone Data Tools'
COMMAND = 'WRITEDATASET FILENAME="C:\Users\kelvin\Desktop\out.szplt"'
```

You can adapt this macro to use relative paths or an environment variable, as we have already done with the macros we created to load data. Here is the macro rewritten to use the environment variable `OUTFILE`:

```bash
#!/MC 1410
$!EXTENDECTRANSMISSION
COMMANDPROCESSORID = 'Tecplot Subzone Data Tools'
COMMAND = 'WRITEDATASET FILENAME="%OUTFILE%"'
```

The circumstances in which you might use `-convert` instead of `-o` are fairly limited. One use might be to write multiple copies of the .szplt file, for example to make a backup (though using the `CP` or `cp` shell command is probably better).

Another use might be to automatically name the .szplt file based on some attribute of the loaded data, rather than requiring a name to be specified. Keep in mind that in the restricted macro environment provided when using `-convert`, the ability to inspect and analyze data is extremely limited. However, you could name a file based on the date, or on an auxiliary data element (using the `AUXDATASET`, `AUXFRAME`, or `AUXZONE` intrinsic variables)—or a combination of these, such as

```bash
#!/MC 1410
$!EXTENDECTRANSMISSION
```
Batch Converting to SZL Format

COMMANDPROCESSORID = 'Tecplot Subzone Data Tools'
COMMAND = 'WRITEDATASET FILENAME="|AUXDATASET:caseid| [DATE].szplt"'

The variable DATASETFNAME contains the full paths of loaded data file(s) and can be used to give the output file the same base name as an input file. Since this variable can contain multiple paths if you have loaded multiple files, we recommend always using an index with it to specify which path you want; otherwise, the paths of all loaded files are substituted into the command, which will cause the save to fail.

#!MC 1410
$!EXTENDEDCOMMAND
COMMANDPROCESSORID = 'Tecplot Subzone Data Tools'
COMMAND = 'WRITEDATASET FILENAME="|DATASETFNAME[1]|.szplt"'

You may use |DATASETFNAME[2]|, |DATASETFNAME[3]|, and so on to refer to the path of a specific file, indexed by loading sequence.

For a full list of available macro variables, see the Chapter 7: "Macro Variables" in the Scripting Guide.
Batch Processing
PyTecplot

TecPLUS™ subscribers are given access to PyTecplot, a high level API that connects your Python script to the power of the Tecplot 360 EX visualization engine. Familiarity with Tecplot 360 EX and the Tecplot 360 EX macro language is helpful, but not required.

Note PyTecplot requires 64-bit Python versions 2.7 or 3.4+ and Tecplot 360 EX version 2017 R1 or later with TecPLUS™ maintenance service. PyTecplot does not support 32 bit Python.

Please refer to the PyTecplot Guide for installation instructions, environment setup, and the full reference manual. The sections below refer only to the User Interface portions of PyTecplot located in Tecplot 360 EX.

28 - 1 PyTecplot Recording

Tecplot 360 EX’s PyTecplot Recorder records a Python script as you perform a sequence of actions interactively. Scripts are PyTecplot Python (.py) format. PyTecplot Python scripts run outside of Tecplot 360 EX, and may be run from either the command line or any Python IDE.

After recording your script, you can edit your script file with a plain text editor to remove redundant operations, compress repetitive actions into loops, replace references to files with variable names, and otherwise modify the script to make it more generic and flexible.

To record a macro with the PyTecplot Recorder dialog, select “Record PyTecplot” from the Scripting menu. Specify a file name in the Write Script (.py) dialog and click Save to initiate the recording. The Macro Recorder dialog remains open during the recording session.

Auto Redraw is disabled during recording. If necessary, you can manually redraw your plot by clicking the Redraw button in the Plot sidebar.

For information on the Macro Recorder dialog, see Chapter 26: “Macro Creation”.

Note

PyTecplot requires 64-bit Python versions 2.7 or 3.4+ and Tecplot 360 EX version 2017 R1 or later with TecPLUS™ maintenance service. PyTecplot does not support 32 bit Python.
28 - 2 PyTecplot Connections

The PyTecplot Connections dialog allows a remote Python instance to control the GUI and interact with the loaded data. Currently, the only available client for this server is PyTecplot, the "tecplot" Python module available on Python's official package repository, PyPI.

Server Configuration

To allow the server to process incoming requests, go to Tecplot 360 EX's main menu and choose Scripting>PyTecplot Connections... and the PyTecplot Connections dialog will appear:

Clicking on the checkbox next to "Accept connections" will enable the server immediately. If the chosen port is already in use by another process, even by another running instance of Tecplot 360 EX, the following error message will be shown:

In this case, you may choose another unused port number and attempt to re-enable the "Accept connections" option.

By default, the TecUtil Server will only listen for requests from localhost. Unchecking the "Listen to localhost only" option will cause the server to process incoming requests from any remote machine, subject to the firewall and security settings of the computer running Tecplot 360 EX.

Connecting from the PyTecplot Client Script

To connect to the server from a Python script, you must have the PyTecplot python package installed. Please see PyTecplot's documentation for detailed instructions on how to get started with PyTecplot. In the Python script, use the tecplot.session.connect() method to connect to the running instance of Tecplot 360 EX:

```python
import tecplot
tecplot.session.connect(port=7600)
```

Once connected, the Python script will continue to run and the Tecplot 360 EX will be updated in real-time.
Activating Server with a Macro File

To activate the TecUtil Server addon in Tecplot 360 EX with a macro, add this macro command to a separate .mcr file:

```plaintext
$!EXTENDEDCOMMAND
COMMANDPROCESSORID = "TecUtilServer"
COMMAND = R'(
    AcceptRequests = Yes
    ListenOnAddress = localhost
    ListenOnPort = 7600
)'
```

To use this function on start-up, simply play the macro file as you launch Tecplot 360 EX:

```
tec360 -p startConnector.mcr
```
PyTecplot
Part 7 Advanced Topics
Tecplot 360 EX provides a variety of methods for creating animated plots and exporting them to movie or sequences of static image files for playback at a later time. The basic animation methods available include:

- **Animation Tools** - Create animations using the **Animate** menu, the Slice Details dialog, or the Streamtraces dialog. The animation can be viewed within Tecplot 360 EX or exported to a movie file.
- **Movie File Creation with Macros** - Use a macro to perform multiple, repetitive changes, and write each image to a movie file.

29 - 1 Animation Tools

Use a built-in animation tool to have Tecplot 360 EX cycle through your data, automatically displaying zones, slices, or streamtraces one after the other.

- **Time Animation**
- **IJK-plane Animation**
- **IJK Blanking Animation**
- **Iso-surfaces Animation**
- **Mapping Animation**
- **Slice Animation**
- **Streamtrace Animation**
- **Zone Animation**

When you need a particular size for your animation image, such as 300 by 250 pixels, first resize your frame to the desired width and height. Then export only the active frame.
29 - 1.1 Time Animation

To animate over time, simply press the play button in the Plot sidebar or in the Time Animation Details dialog. (This dialog can be launched from the Animate menu or by clicking the Details button above the Solution Time slider in the Plot sidebar.) The active frame will be animated from the current time step to the last time step. The current Solution Time determines which transient zones are displayed in the active frame. The slider control can be used to interactively change the Current Solution Time.

This option is available for transient field plot data only.

The Time Animation Details dialog has the following options:

- **Starting Time** - Enter the value of the first solution time to include in the animation. If the Solution Time entered does not exist, the nearest Solution Time less than the entered time is used, or the first solution time if no such time exists. The default value is the first Solution Time. The value of the first Solution Time in the dataset is displayed in Min.

- **Ending Time** - Enter the value of the last Solution Time to include in the animation. If the Solution Time entered does not exist, the nearest Solution Time less than the entered time is used. The default value is the last Solution Time. The value of the last Solution Time in the dataset is displayed in Max.

- **Time Step Skip** - Enter the skip number between time steps. A value of 2 results in every other time steps being animated, a value of 3 animates every 3 time steps, and so on.

- **Number of Steps** - Displays the number of time steps in the data between the Start Time and the End Time.

- **Animation direction** - Select the direction for the animation: forward, backward, loop (forward repeatedly), or bounce (forward, then backward, then forward, then backward...).

- **Current Step** - This field displays the time step for the active frame of the animation. The field is updated while an animation is in progress.

- **Go To** - Use the Go To button to jump to the animation step entered in the Current Step field.

- **Slider** - The slider can be dragged to change the current solution time. The following buttons may also be used.
Animation Tools

- Jumps to the value in Start Time.
- Moves one step toward the value in Start Time.
- Plays the animation as specified by the Animation Mode field. The Play button becomes a Stop button while the animation is playing.
- Moves toward the value in End Time.
- Jumps to the value in End Time.

Click the filmstrip icon to export the animation to a file. See Section 29.4.2 "Animation Export" on page 453. Note that some of the settings in this dialog (such as direction and speed) do not apply when exporting to a file. Instead, you may add these effects later using a video editor, if desired.

29.1.2 IJK-plane Animation

Use the Animate IJK-Planes dialog to display all or a specified subset of the IJK-planes in the current dataset, one at a time. You can choose to animate either the I, J, or K-planes.

To animate IJK-planes, select "IJK-planes" from the Animate menu. The Animate IJK-Planes dialog has the following options:

- Planes to Animate - Specify the set of planes to animate: I, J, or K-planes.
- Initial Index, End Index, Index Skip - Specify an Initial Index (the first plane you want to display), an End Index (the last plane you want to display), and an Index Skip in the fields provided. A skip of 1 displays every index, 2 displays every other index, etc.
- Animation direction - Select the direction for the animation: forward, backward, loop (forward repeatedly), or bounce (forward, then backward, then forward, then backward...).
- Current Index - Displays the number of the current plane index, which can be edited. Click Go to Index after editing to move to the chosen step.
- Slider - The slider can be dragged to change the current plane index. The following buttons may also be used:
 - Jumps to the first index.
 - Moves one step toward the first index.
Animation

- Plays the animation as specified by the Animation Direction field. The Play button becomes a Stop button while the animation is playing.
- Moves toward the last index.
- Jumps to the last index.

Click the filmstrip icon to export the animation to a file. See Section 29.4 “Animation Export” on page 453. Note that some of the settings in this dialog (such as direction and speed) do not apply when exporting to a file. Instead, you may add these effects later using a video editor, if desired.

- Limit Animation Speed to - Toggle-on to limit the animation speed to the value specified.

Figure 29-1 shows an example of animating I-planes in an IJK-ordered zone.

29 - 1.3 IJK Blanking Animation

Use the Animation page of the IJK Blanking dialog (Plot > Blanking > IJK Blanking) to animate a sequence of Tecplot 360 EX renderings, starting with an initial set of blanked IJK indices and proceeding in a series of interpolated steps to a final set of blanked IJK indices.

Figure 29-1. An animated sequence of I-planes.

To restore the workspace back to its normal view after the IJK animation, go to Edit>Undo Style Change.
To animate a sequence of IJK blankings, you must first turn on IJK blanking using the checkbox at the top of the IJK Blanking dialog. For more information on initially setting up IJK blanking, see “IJK Blanking” on page 297.

The Animation page of the IJK Blanking dialog has the following settings:

- **Starting Index (% of Max)** - Specify an initial set of blanked IJK-indices in the text fields. Enter a range of indices for: I, J, and K (index values are entered as percentages of the maximum index).
- **Ending Index (% of Max)** - Specify a final set of blanked IJK-indices. Enter a range of indices for each: I, J, and K.
- **Animation direction** - Select the direction for the animation: forward, backward, loop (forward repeatedly), or bounce (forward, then backward, then forward, then backward...).
- **Number of Steps** - Specify the number of steps. The minimum is two.
- **Current Step** - Displays the number of the current step, which can be edited. Click **Go to Step** after editing to move to the chosen step.
- **Slider** - The slider can be dragged to change the current step. The following buttons may also be used.
 - - Jumps to the first step.
 - - Moves one step toward the first step.
 - - Plays the animation as specified by the Animation direction field. The Play button becomes a Pause button while the animation is playing.
 - - Moves toward the last step.
 - - Jumps to the last step.

Click the filmstrip icon to export the animation to a file. See Section 29.4 “Animation Export” on page 453. Note that some of the settings in this dialog (such as direction and speed) do not apply when exporting to a file. Instead, you may add these effects later using a video editor, if desired.
Animation

- Limit Animation Speed to - Toggle-on to limit the animation speed to the value specified in the field.

29 - 1.4 Iso-surfaces Animation

Use the Animation page of the Iso-surface Details dialog to define iso-surfaces to animate either on screen or to a file. You can reach this page directly by choosing “Iso-Surfaces” from the Animate menu, or you can open the Iso-surfaces Details dialog from the Plot menu or Plot sidebar and click the Animation tab.

- Starting Value - The starting iso-surface value for the animation.
- Ending Value - The ending iso-surface value for the animation.
- Animation direction - Select the direction for the animation: forward, backward, loop (forward repeatedly), or bounce (forward, then backward, then forward, then backward...).
- Number of steps - The range defined by the Starting and Ending value fields above is divided into the specified number of steps for the animation.
- Current Step – Indicates the active step of the animation. You can jump to a specific step by entering the desired value and clicking Go to Step.
- Current Value – Displays the iso-surface value at the current step.
- Slider – The slider can be dragged to change the current step. The following buttons may also be used.
 - Jumps to the first step.
 - Moves one step toward the first step.
 - Plays the animation as specified by the Animation direction field. The Play button becomes a Pause button while the animation is playing.
 - Moves toward the last step.
 - Jumps to the last step.
Click the filmstrip icon to export the animation to a file. See Section 29 - 4 “Animation Export” on page 453. Note that some of the settings in this dialog (such as direction and speed) do not apply when exporting to a file. Instead, you may add these effects later using a video editor, if desired.

- **Limit Animation Speed to** - Toggle-on to limit the animation speed to the value specified in the field.

29 - 1.5 Mapping Animation

Use the Animate Mappings dialog to display all or a specified subset of the XY or Polar Line mappings defined in the active frame, one at a time.

To animate mapping, select “Mappings” from the Animate menu. The Animate Mappings dialog has the following options:

- **Start Map** - Specify the first line mapping you want displayed.
- **End Map** - Specify the last line mapping you want displayed.
- **Map Skip** - Specify the number of maps to skip per step.
- **Animation Mode** - Select whether to animate forward, backward, loop (forward, then back to the beginning for another pass forward), or bounce (forward, then backward, then forward, then backward...).
- **Current Map** - Indicates the map currently displayed. You may jump to a different map by editing the value in the text box and clicking Go to Map.
- **Slider** – The slider can be dragged to change the current step. The following buttons may also be used.
 - **→** - Jumps to the first map.
 - **→** - Moves one step toward the first map.
 - **→** - Plays the animation as specified by the Animation direction field. The Play button becomes a Pause button while the animation is playing.
 - **→** - Moves toward the last map.
 - **→** - Jumps to the last map.

Click the filmstrip icon to export the animation to a file. See Section 29 - 4 “Animation Export” on page 453. Note that some of the settings in this dialog (such as direction and speed) do not apply when exporting to a file. Instead, you may add these effects later using a video editor, if desired.

- **Limit Animation Speed to** - To limit the animation speed, toggle on the checkbox and enter a frame speed value in the text box.
29 - 1.6 Slice Animation

To animate slices, choose Animate>Slices. You may also get to this feature by opening the Slice Details dialog from the Plot menu or the Plot sidebar and choosing the Animate page.

![Slice Animation Dialog](image)

Specify a Starting Value, an Ending Value, and the Number of Steps in the fields provided.

- **Animation Direction** - Select whether to animate forward, backward, loop (forward, then back to the beginning for another pass forward), or bounce (forward, then backward, then forward, then backward...).
- **Current Step** – Indicates the active step of the animation. This may be edited to jump to a specific step. Click the Go to Step button to display the entered time step in the workspace.
- **Current Value or Origin** – Displays the value being varied (e.g. X for an X-plane slice) at the current step. For arbitrary slices, shows the XYZ coordinates of the slice origin (through which the slice will be drawn) at the current step.

Only the primary slice of the current slice group (specified on the Position page) is changed during animations. The start and end slice and any intermediate slices of the current slice group are unchanged. It is possible that the animated primary slice will overlap the start slice, end slice, or an intermediate slice. The animation will proceed, without changing those values.

For arbitrary slices, the start and end origin positions are specified in XYZ coordinates. Arbitrary slices are oriented using the normal defined on the Definition page of the Slice Details dialog (see “Arbitrary Slice Orientation” on page 229). The slice’s origin point is moved between the start and end origins specified here; at each step of the animation, the slice is drawn through the origin point. and oriented against the normal.

After choosing the starting and ending positions and the number of steps, you can animate on the screen or export the animation to a file.
Animation Tools

• **Slider** – The slider can be dragged to change the current solution time. The following buttons may also be used.
 - ![Arrow icon] – Moves one step toward the value in Start Time.
 - ![Play button icon] – Plays the animation. Becomes a Stop button while the animation is playing.
 - ![Arrow icon] – Moves one step toward the value in End Time.
 - ![Stop button icon] – Jumps to the value in End Time.

Click the filmstrip icon to export the animation to a file. See Section 29 - 4 “Animation Export” on page 453. Note that some of the settings in this dialog (such as direction and speed) do not apply when exporting to a file. Instead, you may add these effects later using a video editor, if desired.

• **Limit Animation Speed** - Toggle-on to limit the animation speed to the value specified in the text field.

29 - 1.7 Streamtrace Animation

To animate your streamtraces, choose **Animate>Streamtraces**. You may also access this feature by opening the Streamtrace Details dialog from the Plot menu or the Plot sidebar and switching to the Animate page.

When you animate streamtraces, timing markers are automatically turned on. You can change the appearance of these markers in the Streamtrace Details dialog. See Section 15 - 1.4 “Timing Page” for details.

Specify the number of steps per cycle and the number of cycles in the fields provided on the **Animate** page of the Streamtrace Details dialog.

Click the Play button to view the streamtrace animation on the screen, or click the filmstrip icon to export the animation to a file. See Section 29 - 4 “Animation Export”, on page 453.
29 - 1.8 Zone Animation

To animate zones, select “Zones” from the Animate menu. From the Zone Animation Details dialog, specify the animation mode, Start Zone, End Zone, and Zone Skip in the fields provided.

You can animate to a file or “On Screen”. (See also Section 29 - 4 “Animation Export”.)

Use the Mode drop-down menu to select one of the following two options:

- **Step by Number** - Animate all zones from the first zone to the last zone with a skip specified in the Zone Skip field. A Zone Skip of 1 animates all zones.
- **Group Step by Number** - Animate zones in groups (as specified by the Group Size field). For example, a Group Size of 2 will animate all zones in groups of 2 (i.e. zones 1 and 2, followed by zones 3 and 4, and so on).

The following fields are also available:

- **Starting zone** - The first zone in the animation.
- **Ending zone** - The last zone in the animation.
- **Zone Skip or Group Size** - The label on this field changes depending on the setting of the Mode drop-down menu, described previously. Decides the increment for switching zones (for Step by Number) or the size of the zone group (for Group Step by Number).
- **Animation Mode** - Select whether to animate forward, backward, loop (forward, then back to the beginning for another pass forward), or bounce (forward, then backward, then forward, then backward...).
- **Current Zone** – Indicates the zone displayed. This may be edited to jump to a specific zone; click Go to Zone after editing.
- **Slider** – The slider can be dragged to change the current step. The following buttons may also be used.
 - Jumps to the first map.
 - Moves one step toward the first map.
 - Plays the animation as specified by the Animation direction field. The Play button becomes a Pause button while the animation is playing.
 - Moves toward the last map.
 - Jumps to the last map.

Click the filmstrip icon to export the animation to a file. See Section 29 - 4 “Animation Export” on page 453. Note that some of the settings in this dialog (such as direction and speed) do not apply when exporting to a file. Instead, you may add these effects later using a video editor, if desired.
Movie File Creation with Macros

- **Limit Animation Speed** - Toggle-on to limit the animation speed to the value specified in the text field.

The Animate Zones dialog is not available for transient datasets.

29 - 2 Movie File Creation with Macros

The Tecplot macro language expands the capabilities of the standard animation features. The macro commands allow you to do anything you can do interactively—and more. You can also use loops to repeatedly rotate 3D objects, cycle from one active zone to another, and so on, to create your movie. See Chapter 26: “Macros” for further information about the Tecplot macro language.

A typical macro file for making movies has the following form:

```plaintext
#!MC 1410
... optional commands to set up the first image
$!EXPORTSETUP EXPORTFORMAT = AVI
$!EXPORTSETUP EXPORTFNAME = "mymovie.avi"
$!EXPORTSTART
EXPORTREGION = CURRENTFRAME
$!LOOP 50
... commands to set up next image
$!REDRAWALL
$!EXPORTNEXTFRAME
$!ENDLOOP
$!EXPORTFINISH
```

For example, the following macro file can be used to animate zones:

```plaintext
#!MC 1410
## Set up Export file type and name.
$!EXPORTSETUP EXPORTFORMAT = AVI
$!EXPORTSETUP EXPORTFNAME = "C:\temp\timeseries.avi"
## Begin Animating
$!LOOP NUMZONES
## The |Loop| variable is equal to the current loop cycle number.
## |ACTIVEFIELDZONES| = |Loop|
$!REDRAWALL
## This series of |IF| statements ensures that a new AVI file will be created when
## the macro is started.
$!IF |Loop| == 1
$!EXPORTSTART
EXPORTREGION = CURRENTFRAME
$!ENDIF
$!IF |Loop| != 1
$!EXPORTNEXTFRAME
$!ENDIF
$!ENDLOOP
$!EXPORTFINISH
```

29 - 3 Advanced Animation Techniques

29 - 3.1 Text Changes

There may be times when you want to include information in your animation which tells viewers about the time step, current zones, or a mapping. There are two ways this can be done.
Using Dynamic Text

The best way to do this is to add dynamic text to your text box. See Section 18 - 1.5 “Dynamic Text”.

Attaching Text to Zones

This method works best if you are animating zones. First, create several text strings in your data file, and use the ZN= parameter to attach each text string to a zone or mapping. You should have a separate text string for each zone that will be used in your animation. For example

You can also use Tecplot 360 EX’s dynamic text feature (see Section 18 - 1.5 “Dynamic Text”) to insert a zone name into your text strings. For example

29 - 3.2 Multiple Frame Animation

Synchronized animation of plots in multiple frames requires the use of a macro. Macros can use the $!FRAMECONTROLS commands to switch between each frame. The following template demonstrates how this is done with a layout where each frame contains a similar plot:

Animation
When you choose to animate to a file in a dialog with animation options, the Export dialog appears. Choose the desired export format from the menu at the top of the dialog, then set the options as desired.

Two different types of export formats are available:

- Movie formats (e.g. mpeg-4), which produce a single file for a given animation.
- Sequenced image formats (e.g. png etc.), which produce a sequence of static image files for a given animation. See Section 29 - 4.6 “Sequenced Image Files”.

Most of the available formats share a set of similar options, which are described here.

- **Region** - Select the region of the workspace to animate.
 - **Current Frame** - Captures only the active frame.
 - **All Frames** - Captures the smallest rectangular area containing all frames.
 - **Work Area** - Captures the workspace.

- **Use Width of Image on Screen** - Select this option to generate an image file the same size as the current plot on the screen. This option is required if you use on-screen image rendering in the Display Performance dialog. See Section 30 - 3, “Performance Dialog” for details.

- **Enter Width** - Select this option to specify a width (in pixels) for the generated image. A larger width increases the quality of your image. However, the greater the width you specify, the longer it will take to export the image and the larger the exported file. This option is not available if you have chosen to use on-screen image rendering.

- **Antialiasing** - Select this option to smooth jagged edges in the image. The image is rendered at a higher resolution than that at which it will eventually be displayed, then reduced in size.
Animation

- **Supersample Factor** - Control the amount of antialiasing used in the image. The higher this number, the larger the temporary image used for antialiasing will be, and the more time may be required.

- **Animation Speed (frames/sec)** - Enter a value in the text field to set your animation's speed in frames per second.

The following sections describe any settings unique to specific formats, as well as providing additional useful information about each format (references, viewers, etc.).

- AVI Files
- Flash Files
- MPEG-4 Files
- Raster Metafiles

Performance Tips

If exporting is taking an unusually long time, or you get an error message saying that the animation cannot be exported, the most likely cause is that the width of the image you are trying to export is too large. Choosing a smaller width may greatly speed up the export process. Note that antialiasing multiplies the image's width and height by the entered supersampling factor, so choosing a lower factor also speeds up export.

For an export size of Length x Width, with a supersampling factor of SSF, the size of an uncompressed true color frame is approximately Length x SSF x Width x SSF x 3. Memory requirements to export such a frame can be up to twice this.

29 - 4.1 AVI Files

AVI format is an older video format for Windows platforms, and is widely compatible with Windows applications. Below are some applications that can be used to view and/or edit AVI files:

- **QuickTime** - Included with Mac OS X, Apple's QuickTime can play AVI files and export them to other formats as necessary.
• **Xanim** - A program for playing a wide variety of video formats on Linux (and UNIX) systems with X11. More information is available at http://xanim.polter.net.

• **VideoLan Client (VLC)** - Free player that supports many video formats, including AVI, on Windows, Mac, Linux, and several other platforms. http://www.videolan.org/vlc/

AVI Export Options

The following options are unique to AVI files. For options common to all supported export formats, see “Animation Export” on page 453.

- **Use Multiple Color Tables** - Toggle-on to create an AVI file with a separate color table each step in the animation. If this check box is not selected, Tecplot 360 EX scans all steps in the animation and creates one color table for the entire animation. Multiple color tables can provide better image quality for the animation, but many applications display only the first color table provided.

29 - 4.2 Flash Files

Adobe® Flash® is a popular tool for creating interactive Web content, including animations and movies. The Flash product is not required to create Flash-format movies using Tecplot 360 EX, nor to view them. Flash files have a filename extension of .swf and are therefore also widely referred to as SWF files.

Playback

- Flash movies can be played in several freely distributed Flash players. For example, [Swiff Player](#) is a stand-alone player for Windows that enables Flash users to easily play their Flash movies.
- You can play Flash movies using the QuickTime software included with Mac OS X.
- There are several tools at download.com that can help manage, browse, convert, and display all kinds of Flash files on your computer.

Flash in PowerPoint

The easiest way to insert and SWF into Microsoft® PowerPoint® presentations is to download [ShowRoom](#), a Microsoft PowerPoint add-in that incorporates a free Flash player formerly called Swiff Point Player. It’s from the same developer as the standalone Swiff Player described under Playback, above. (Some other features of ShowRoom are not free of charge, but these need be paid for only if you want to use them.)

A secondary option is to play it in a PowerPoint presentation using a Microsoft ActiveX control and the Macromedia Flash Player. To run the Flash file, you add an ActiveX control to the PowerPoint slide and create a link from it to the Flash file. You also have the option of embedding the Flash file in the presentation; see:https://support.office.com/en-us/article/Play-an-Adobe-Macromedia-Flash-animation-in-a-presentation-36b69b5e-fc9b-413f-b41a-c8749babc5f8

455
Animation

Flash on the Web

Flash files can be inserted into Web documents using Web design tools such as Adobe® Dreamweaver® (although this is only one such tool). You can also create Web documents by writing HTML directly in a text editor.

Once inserted in a Web page, Flash movies play directly within your browser, assuming the Flash plug-in is installed. (Most browsers on today's desktop operating systems come with the Flash plug-in pre-installed; if your browser did not, you can easily install it.) An outside media player is not needed to launch the animation.

Flash Export Options

The following options are unique to Flash files. For options common to all supported export formats, see "Animation Export" on page 453.

• **Image Type** - Choose an image type. Your options are:
 • True Color - Select this option to create twenty-four-bit images with lossless (ZLIB) compression.
 • JPEG - Select this option to create twenty-four-bit images with lossy compression. This produces smaller files than True Color, and the images will be of lower quality.
 • 256 Colors - Select this option to reduce each image to 256 colors and compress it with ZLIB. This gives essentially the same output as AVI.

• **Optimize for Speed** - For True Color or 256 Colors image types, select this option to create the output as quickly as possible. This reduces the compression level and results in larger files. It does not affect playback speed.

• **Optimize for File Size** - For True Color or 256 Colors image types, select this option to produce the smallest possible files. This setting does not affect playback speed.

29 - 4.3 MPEG-4 Files

MPEG-4 is the modern ISO standard for video playback. MPEG-4 files can be played by a wide variety of computer software, portable devices, and set-top boxes. We suggest:

• QuickTime - Included with Mac OS X, Apple's QuickTime can play MPEG-4 files and export them to other formats as necessary.

• VideoLan Client (VLC) - Free player that supports many video formats, including MPEG-4, on Windows, Mac, Linux, and several other platforms. http://www.videolan.org/vlc

MPEG-4 export does not have any options besides the ones that apply to all animation export formats; see "Animation Export" on page 453.
29 - 4.4 Windows Media (WMV) Files

Windows Media Video (WMV) files are widely supported by Windows applications, including Windows Media Player and Microsoft Office (PowerPoint, etc.). They may also be played on Macintosh computers using Microsoft's free Windows Media Components for QuickTime.

- Windows Media Components for QuickTime

WMV export does not have any options besides the ones that apply to all animation export formats; see "Animation Export" on page 453.

29 - 4.5 Raster Metafiles

Raster Metafile is a NASA-defined standard format for storing bitmap images and may contain one or more images, allowing it to be used for animations. The format is defined in the following reference:

Raster Metafiles support only 256-color images (Tecplot 360 EX selects the best colors). Plots with many colors may have poor results when exported as Raster Metafiles when compared to exports as true-color formats. Using Raster Metafiles for animations with transparency or smooth color gradients may result in poor image quality.

When you select Raster Metafile in the Export dialog, you have the following additional options:

- Use Multiple Color Tables - Select this check box to create a Raster Metafile with a separate color table each step in the animation. If this check box is not selected, Tecplot 360 EX scans all steps in the animation and creates one color table for the entire animation. Multiple color tables can provide better per-step image quality for the animation, but may result in flicker during playback.

29 - 4.6 Sequenced Image Files

With sequenced image formats, Tecplot will produce separate image files (e.g. png, tiff, etc.) with a sequence number appended to the body of the filename. For example, if you specify to output to "mymovie.png", the following files will be generated:

```
mymovie_000001.png
mymovie_000002.png
... and so on.
```
Note that every time an animation is exported with sequenced image files the files will be numbered starting at 1 and incrementing by 1. Even if you are doing something like a J-Planes animation and are starting at a J-Plane other than 1.

The following image file formats are available when generating animations: BMP, JPEG, PNG, and TIFF. All settings for these formats when making animations is the same as are available when exporting a single image (via the File/Export dialog). See the corresponding section for each format:

BMP: Section 25 - 3.2 “BMP Export”.
JPEG: Section 25 - 3.3 “JPEG Export”.
PNG: Section 25 - 3.4 “PNG Export”.
TIFF: Section 25 - 3.5 “TIFF Export”.
Customization

This chapter discusses how custom files are loaded on startup, how to manually open those files via the command line, the customizations that can be made by editing the Tecplot 360 EX configuration file, and customizations that can be made using the Options menu.

30 - 1 Custom Files loaded on Startup

On startup, Tecplot 360 EX will load certain configuration files. These files are editable and can be placed in different locations depending on preference. The different file types are as follows:

- tecplot.add (See “Add-on Loading” on page 471.)
- tecplot.cfg (See “Configuration Files” on page 460.)
- tecplot.fnt (See “Custom Character and Symbol Definition” on page 467.)
- tecplot.mcr (See “Quick Macro Panel” on page 420.)
- tecplotlatex.mcr (See “LaTeX Expressions” on page 281.)
- variable_aliases.txt (See “Creating and Using a Variable Alias File” on page 71.)

When Tecplot 360 EX first launches, it looks for the above tecplot* files in the following locations, in the order listed below. Tecplot* specifies any of the above filenames.

- The file tecplot* specified on the command line. (See Section 30 - 1.1 “Loading custom files via the Command Line”.)
- The file tecplot* in the current working directory.
- The file tecplot* in your home directory when using -h flag on the command to set the home directory.
- The file tecplot* in the Users home directory. On Mac and Linux, the tecplot* file must be preceded by a period in the users home directory. For example, .tecplot.add.
- The file tecplot* in the Tecplot 360 EX installation directory.

The first file found in the above search order is used; others are ignored even if they exist. To see what tecplot* files are being loaded, in 360 go to Help->About Tecplot 360 EX (on Mac, Tecplot 360 EX->About Tecplot 360 EX) and look for the files in the Runtime environment.
Customization

30 - 1.1 Loading custom files via the Command Line

You can specify a different custom file by adding an option flag in front of the custom file name to the command line when launching Tecplot 360 EX.

The following command starts Tecplot 360 EX and installs the custom file specified at startup.

```
tec360 -flag tecplot*
```

Where -flag is the flag of the certain file you want to load. Refer to the table below for the correct flag to be used.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-addonfile filename</code></td>
<td>Supply a custom list of addons via the <code>tecplot.add</code> file.</td>
</tr>
<tr>
<td><code>-c cfgfile</code></td>
<td>Use <code>cfgfile</code> for the configuration instead of the default configuration file, <code>tecplot.cfg</code>.</td>
</tr>
<tr>
<td><code>-f fontfile</code></td>
<td>Use <code>fontfile</code> instead of the default font file, <code>tecplot.fnt</code>.</td>
</tr>
<tr>
<td><code>-p scriptfile</code></td>
<td>Use <code>scriptfile</code> like <code>tecplot_latex.mcr</code> instead of the default, <code>tecplot_latex.mcr</code>.</td>
</tr>
<tr>
<td><code>-qm quickpanelfile</code></td>
<td>Place the macro functions in <code>quickpanelfile</code> in the Quick Macro Panel, instead of using the macros from the default file, <code>tecplot.mcr</code>.</td>
</tr>
</tbody>
</table>

To see an example of any of these files, open the file in the your Tecplot 360 EX installation.

30 - 2 Configuration Files

A Tecplot 360 EX configuration file is a special type of macro file that Tecplot 360 EX reads on start up. Use customized configuration files to override any or all of Tecplot 360 EX's factory default settings.

You can create a configuration file from scratch using any plain text editor, or by editing a copy of an existing configuration file.

A configuration file should include only those options for which you want to override defaults.

See Section 30 - 1 “Custom Files loaded on Startup” for information on how it is loaded.

30 - 2.1 Editing Configuration File

You are not limited to merely customizing those settings that appear in an existing configuration file. Most settings that can be modified by the $Field, $LineMap, or $Interface macro commands can be changed in the configuration file directly. The $LIMITS macro command can be used in the configuration file only.

The simplest way to do this is to create a layout or macro with the settings you want, then copy and paste the appropriate commands into your configuration file. See the Scripting Guide for complete details on macro commands.

SetValue Commands

SetValue Commands are macro commands used to specify the value of a given plot attribute. You may add SetValue commands to your `tecplot.cfg` file to override any of Tecplot 360 EX's default settings. For example, suppose you want your 2D axes to appear cyan. You can add this preference to your configuration file as follows:
1. Using the Tecplot 360 EX interface, create a 2D plot with cyan axes while either recording your steps as a macro, or else save the resulting plot as a Tecplot layout.

2. Edit the resulting macro or layout, scanning for the lines that set the 2D axis colors. The following example shows the commands that specify the X- and Y-axis details in a layout of a 2D plot with cyan axes:

```plaintext
$!TWODAXIS XDETAIL{RANGEMIN = -3}
$!TWODAXIS XDETAIL{RANGEMAX = 15}
$!TWODAXIS XDETAIL{GRIDLINES{SHOW=YES}}
$!TWODAXIS XDETAIL{AUTOMATIC=NO}
$!TWODAXIS XDETAIL{GRSPACING = 5}
$!TWODAXIS XDETAIL{GRIDLINES{COLOR = CYAN}}
$!TWODAXIS YDETAIL{GRIDLINES{SHOW = YES}}
$!TWODAXIS YDETAIL{GRIDLINES{COLOR = CYAN}}
```

3. Discard everything but the lines that actually set the color:

```plaintext
$!TWODAXIS XDETAIL{GRIDLINES{COLOR = CYAN}}
$!TWODAXIS YDETAIL{GRIDLINES{COLOR = CYAN}}
```

4. Paste the resulting lines into your configuration file.

Plot Default Setting - FIELDMAP and LINEMAP

A single `$!FIELDMAP` command can be included to set plot defaults. The zone cannot be specified in the configuration file, and the command is not effective for values set dynamically by Tecplot 360 EX, such as Mesh Color. In the example below, the default contour type is Flood, scatter symbol shape is Delta, and scatter size is 1.8.

```plaintext
$!FIELDMAP CONTOUR{CONTOURTYPE = FLOOD}
$!FIELDLAYERS SHOWSCATTER = YES
$!FIELDMAP SCATTER{SYMBOLSHAPE{GEOMSHAPE = DEL}}
$!FIELDMAP SCATTER{FRAMESIZE = 1.8}
```

In the same way as above, a single `$!LINEMAP` command can be added for line mapping defaults. In the example below, XY and Polar Line mappings will have a dashed line pattern, and symbols will be filled circles.

```plaintext
$!LINEMAP LINES{LINEPATTERN = DASHED}
$!LINEPLOTLAYERS SHOWSYMBOLS = YES
$!LINEMAP SYMBOLS{SYMBOLSHAPE{GEOMSHAPE = CIRCLE}}
$!LINEMAP SYMBOLS{FILLMODE = USELINECOLOR}
```

Override Automatic View>Fit

When loading a 3D plot, Tecplot 360 EX automatically fits the plot to the frame. To revert to the old Tecplot 360 EX behavior, which used a fixed zoom factor, remove the `#` from the following line in your `tecplot.cfg` file:

```plaintext
#&&!FrameSetup Initial3DScale = 0.7
```

Interface Configuration

The many members of the `$!INTERFACE` macro help you configure Tecplot 360 EX’s user interface and graphics drawing capabilities. Although some of these commands can be executed in any macro, the best
Customization

place to put these is in the Tecplot 360 EX configuration file: `tecplot.cfg`. Below are a few examples. Refer to the Scripting Guide for a complete listing.

General Interface Configuration Options

$INTERFACE followed by:

• **MOUSEACTIONS (MIDDLEBUTTON (SIMPLEDRAG-ZOOMDATA))** - Specify the action of the middle mouse button click and drag. Several other options for the middle and right mouse buttons are listed in the Scripting Guide. These commands can only be executed in the Tecplot 360 EX configuration file.

• **USESTROKEFONTSFOR3DTEXT = (YES, NO)** - If set to YES, all text drawn in the work area will be drawn using Tecplot 360 EX’s internal stroke fonts. If set to NO, the native True Type fonts will be used instead.

OpenGL-Specific Configuration Options

Several options are available to further tune Tecplot 360 EX to operate with the OpenGL capabilities of your platform. To assign values to these parameters you must use the $INTERFACE OPENGLCONFIG command. A complete list of these options is given in the Scripting Guide.

$INTERFACE OPENGLCONFIG followed by:

• **(ALLOWHWACCELERATION = (YES, NO))** - In some cases, bugs in OpenGL drivers cause problems in Tecplot 360 EX. In these situations, Tecplot 360 EX will typically behave better if this options is set to NO. However, Tecplot 360 EX will also be slower.

• **(SCREENRENDERING (DOEXTRADRAWFORLASTPIXEL = (YES, NO)))** - Some OpenGL implementations use an optimization for line drawing that omits the last pixel in the line. Set this to YES to change all line drawing to force the last pixel to be drawn. This setting applies only to drawing on the screen.

• **(SCREENRENDERING (STIPPLEALLLINES = (ALL, CRITICAL, NONE)))** - Set to ALL to make all lines drawn using stippling. Set to CRITICAL to use stippling for stroke and user-defined fonts. Set to NONE to disable stippling. This setting applies only to drawing on the screen.

• **(IMAGERENDERING (DOEXTRADRAWFORLASTPIXEL = (YES, NO)))** - Some OpenGL implementations use an optimization for line drawing that omits the last pixel in the line. Set this to YES to change all line drawing to force the last pixel to be drawn. This setting applies only to exporting images from Tecplot 360 EX.

• **(IMAGERENDERING (STIPPLEALLLINES = (ALL, CRITICAL, NONE)))** - Set to ALL to make all lines drawn using stippling. Set to CRITICAL to use stippling for stroke and user-defined fonts. Set to NONE to disable stippling. This setting applies to exporting images from Tecplot 360 EX.

• **(PRETRANSLATEDATA = (AUTO, ON, OFF))** - Applies a translation to data before sending it to OpenGL for rendering, reducing jitter when data is far from the origin but has small
differences between data points. The default is AUTO, which applies the translation automatically when appropriate.

30 - 2.2 Default Temporary Directory

Tecplot 360 EX writes out a number of temporary files. To tell Tecplot 360 EX where to place these files, put the following macro command in the `tecplot.cfg` file:

```
$!FILECONFIG    TEMPFILEPATH = "tempfilepath"
```

where `tempfilepath` is the new path. The default path is system dependent.

30 - 3 Performance Dialog

Use the Rendering Settings page of the Performance dialog (accessed via the Options menu) to adjust the Plot Approximation, Graphics Cache, and Image Export Options. Use the Miscellaneous Settings page of the Performance dialog (accessed via the Options menu) to adjust Data I/O, Load On Demand, Variable Derivation, and Status Information.

30 - 3.1 Rendering Settings

The Rendering page of the Performance dialog has the following options:

Auto Redraw - When selected, Tecplot 360 EX will automatically redraw the plot whenever style or data changes. Some users prefer to turn this option off while changing multiple style settings, and then manually pressing Tecplot 360 EX's [Redraw] button on the Plot sidebar to see the full plot.

Auto-redraw can be interrupted with a mouse click or key press.

Plot Approximation

- **Approximate Plots for Better Speed** - An approximate plot may be used when manipulating the plot to improve interactive performance. This feature is most useful on older, slower
Customization

hardware and defaults to off. Approximate plots may also be used for non-active frames. The degree of detail of the approximation is controlled by the following settings:

- **Automatic** - When the time to render (in seconds) is above the set threshold, Tecplot 360 EX will render the approximate plot for style, data, and interactive view changes, followed immediately by the full plot. This option provides for good interactive performance with the final plot always displayed in the full representation.

- **Non-Active Frames Always Approximated** - When only one frame exists, this option is equivalent to automatic mode. If more than one frame exists, the active frame is set to automatic mode while the other frames are approximated.

- **All Frames Always Approximated** - When the number of data points is above the point threshold, Tecplot 360 EX will render the approximate plot in any frame. To see the full representation press the [Redraw] button on the Plot sidebar.

- **Approximate Frames when Time (in seconds) to Render is Above** - Use this value to determine when to automatically turn on plot approximation for all frames. All frames will be approximated when the time to render the plot (all frames) while doing interactive view changes (rotation, translation, scaling) is greater than the supplied value. This setting does not apply when using the “All Frames Always Approximated” mode.

- **Approximate Plot as % of Full Plot** - This value controls the percentage of geometric detail represented by the approximate plot. The larger the percentage the more closely the approximation represents the original plot. However, the interactive performance is reduced. This number should be adjusted until there is a balance between good interactive performance and sufficient detail. Typically, the percentage should be set to be less than or equal to 50. If values larger than 50% are needed to provide sufficient detail, consider not using approximate plots.

Graphics Cache

Tecplot 360 EX uses OpenGL to render plots. OpenGL provides the ability to cache graphic instructions for rendering and can re-render the cached graphics much faster. This is particularly true for interactive manipulation of a plot. However, this performance potential comes at the cost of using more memory. If the memory need is too high, the overall performance could be less.

Use one of the following Graphics Cache modes to optimize your computer’s performance:

- **Cache All Graphics** - When selected, Tecplot 360 EX assumes that there is enough memory to generate the graphics cache. If this is valid, Tecplot 360 EX’s rendering performance will be optimal for interactive manipulation of plots.

- **Cache Only Lightweight Graphics Objects** - Lightweight objects include approximate plots and some other minor items, but do not include full plots. This is a good setting for memory constrained problems. Consider using this option in conjunction with the “Plot Approximation” mode set to “All Frames Always Approximated”.

- **Do Not Cache Graphics** - Consider using this option when memory is very limited. If you intend to interact with the plot, also consider setting the “Plot Approximation” mode set to “All Frames Always Approximated”.

In order to optimize animation, graphics caching is temporarily disabled during animations that include zones, line mappings, time, or blanking elements. Graphics caching is not altered during animations that include slices, streamtraces, or iso-surfaces.
Performance Dialog

High Quality Font Usage
Tecplot 360 EX supports high quality TrueType fonts and can use any TrueType font installed on your system. (See Section 18.2.1 “Font Folders and Fallback” for more information on how fonts work with Tecplot 360 EX.)

Tecplot 360 EX has three high quality font modes:

- **When Possible** (Default setting for Windows) - Tecplot 360 EX uses available TrueType fonts for any size text. This produces the best rendering quality; however, performance is slower for large amounts of text.

- **For Large Characters Only** - Tecplot 360 EX uses the TrueType fonts for large characters only. Small characters will use Tecplot 360 EX's built-in stroke fonts. This is a good blend of quality and performance. However, small characters may not have the same appearance as large characters.

- **Never** - Tecplot 360 EX never uses TrueType fonts.

Image Export Options

Some graphics card’s hardware does not support off-screen rendering (needed for exporting images). In addition, most graphic hardware is slower at producing images off-screen than on-screen.

To accommodate a variety of graphic hardware Tecplot 360 EX provides two image export modes:

- **Safe (Render Image Off-Screen)** - (Default) Tecplot 360 EX will render all exported images off-screen. This allows images to be created that are not bound by the physical size and state of the Tecplot 360 EX drawing area.

- **Fast (Use On-Screen Image)** - Tecplot 360 EX will grab the pixels from the physical Tecplot 360 EX drawing area. Any rendering damage, such as occluding windows or partially drawn images will become part of the exported image. In addition, the image size is bound by the physical size of the Tecplot 360 EX drawing area.

Best Practices For Rendering Performance

The factory settings in the Performance dialog are designed for moderately-sized data and occasionally may need to be adjusted to optimize Tecplot 360 EX's rendering performance. For example, if you are doing a lot of interactive work with your data, you may wish to turn on Plot Approximation to make these operations more responsive. If you do not have much spare memory, you may wish to turn off the Graphics Cache, or set it to “Cache only Lightweight Graphics Objects.”

If you are using Plot Approximation, adjust the “Approximate Plot as % of Full Plot” value to give an acceptable balance between interactive performance and plot detail.

The size of the data isn’t the only factor when rendering in Tecplot 360 EX. If your plot includes slices or iso-surfaces, you may also need to adjust your plot approximation mode and graphics cache settings.

If you are using Plot Approximation, adjust the “Approximate Plot as % of Full Plot” value to give an acceptable balance between interactive performance and plot detail.
30 - 3.2 Miscellaneous Settings

The Miscellaneous page of the **Performance** dialog has the following functions:

![Performance Dialog](image)

Data I/O

- **Use Memory Mapped I/O** - When toggled-on, Tecplot 360 EX will use system level memory mapping functions to map Tecplot 360 EX variables directly over block data in a binary data file or layout package file. Doing this at the system level generally provides the best available performance for loading the data.

 The advantage of mapping variable data is that Tecplot 360 EX will only load the variable when it is needed, not when initially opening the file (but see also Load On Demand in this dialog). In addition, the mapped variable data can be shared between other Tecplot 360 EX sessions running on the same machine, saving memory. Memory mapped I/O is most useful when there are a large number of data points to load from a file and they are not all being used by Tecplot 360 EX at the same time. Only variable data that is in a binary block format (the default for .plt files generated by Tecplot 360 EX) can be memory mapped.

Load On Demand

With load-on-demand activated, Tecplot 360 EX generates plots faster and using less memory by only loading data that is needed for the plot. If changes to the plot style require additional variables to be loaded, Tecplot 360 EX will automatically load them, and if necessary, unload variables that are no longer used. Tecplot 360 EX’s ability to automatically load and unload variables on demand allows you to examine data that is much larger than the physical or virtual memory of your computer.

This setting does not affect reading data in Tecplot Subzone (.szplt) format, also known as SZL. SZL data is always loaded on demand, and in the smallest possible amount, which may be less than a full zone’s worth of a variable.

For large datasets, only the zones and variables currently in use will be loaded. However, for small datasets, some other zones and variables may be loaded for you (based on the Memory Threshold).

- **Unload Strategy** - Specifies how to manage unloading variables and other load-on-demand resources.
Custom Character and Symbol Definition

- **Auto Unload** - This strategy attempts to keep Tecplot 360 EX's memory use within the defined Min and Max Memory Thresholds. Tecplot 360 EX uses these values to determine when and how much it should unload. This is the best option for exploring data as Tecplot 360 EX only unloads if and when the memory threshold has been exceeded; if the threshold is not exceeded, data loaded on-demand remains available in memory if you need it again.

- **Minimize Memory Use** - This strategy is used if more aggressive unloading of variables and other load-on-demand resources is required. This option is best suited for animating through a very large number of time steps, where each step consumes a significant part of the computer's available physical and virtual memory.

- **Never Unload** - This strategy disables the unloading capability of load-on-demand while still preserving the ability to load variables on demand.

Most users should select either the "Auto Unload" or "Minimize Memory Use" options.

- **Memory Threshold (%) [Auto Unload ONLY]** - When Tecplot 360 EX uses at least the maximum percentage of the available physical and virtual memory, it will attempt to unload variables and other load-on-demand resources until the available physical and virtual memory is at or below the specified minimum percentage.

Variable Derivation

When Tecplot 360 EX needs to create a nodal variable from a cell centered variable, it uses a prescribed derivation method. Tecplot 360 EX provides two such derivation methods: fast and accurate.

- **Fast (Linear)** - When selected, Tecplot 360 EX uses simple averaging to derive a nodal variable from a cell centered one.

- **Accurate (Laplacian)** - When selected, Tecplot 360 EX uses Laplacian interpolation to derive a nodal variable from a cell centered variable.

Status Information

Use the following controls in the Status Line region of the Performance dialog to customize what is displayed in the status line:

- **Show Status Line** - Turn this preference on/off to control the display of status messages.

If you are remotely displaying Tecplot 360 EX on an X terminal, updating the status line can slow down processing. If this is the case, turn off the Show Status Line control.

- **Show Continuous State Messages** - Turn on this control to receive context-sensitive commentary in the status line.

- **Show Continuous Running Coordinates** - Turn on this control to display the coordinates of your mouse cursor in the status line.

- **Show Tool Tips** - Use this option to turn tool tips on or off.

30 - 4 Custom Character and Symbol Definition

Generally, you will use TrueType fonts for displaying text on your screen and for printing. However, you can configure Tecplot 360 EX to use stroke fonts instead using the settings on the Rendering page of the
Customization

Performance dialog (see “High Quality Font Usage” on page 465) or adding the USESTROKEFONTSSCREEN and USESTROKEFONTSFOR3DTTEXT macro commands to your configuration file (see “General Interface Configuration Options” on page 462). Stroke fonts define characters to be displayed on the screen using a set of straight lines (called strokes, naturally). Stroke fonts, if enabled, are also used in exported images (however, vector printing and file formats may use TrueType or PostScript fonts).

The stroke fonts are faster to draw than TrueType fonts, which can be important if you create plots with a lot of complex text. Another advantage of the stroke fonts is that you can redefine or modify the strokes that make up the characters, as they are stored in a plain text file called tecplot.fnt, which can be modified using an editor. For information on how to load a custom font file, see Section 50 - 1 “Custom Files loaded on Startup”.

The Font File is structured as follows:

```
#FF 4
CharCellHeight
Stroke command set for Helvetica Font
Stroke command set for Greek Font
Stroke command set for Math Font
Stroke command set for User-Defined Font
Stroke command set for Times Font
Stroke command set for Times Italic Font
Stroke command set for Courier Font
```

The file type and version are on the first line (“FF” refers to Font File). CharCellHeight is the interline spacing (the height of a capital M plus some vertical space) in the units of a two-dimensional coordinate system used to define the stroke-font characters. The baseline of the characters is at zero. Before Tecplot 360 EX uses the character definitions, they are normalized by the character cell height.

Following the character cell height, there are seven sets of stroke commands, one set for each font as shown above. Each stroke command set consists of definitions for the characters in the font. Each font has a base set of 96 characters (character indices 32 to 127). Some fonts also include an extended set of characters (character indices 160 to 255). The extended characters are needed to complete the character sets for most of the common European languages.

All seven stroke command sets must be present, and each must have at least one character defined. Each stroke command set begins with the definition for a space (character index 32). After that, characters within a stroke command set may be defined in any order. If a character is not defined in the Font File, it is drawn as a blank.

Each character in a stroke command set is defined as follows:

```
CharIndex NumCommands CharWidth
Command1
Command2
Command3
```

CharIndex is the character index that ranges from 32 to 127 and 160 to 255 for each font (see Table 18 - 2 for the matching of the character index to the English, Greek, Math, and standard User-Defined font characters). NumCommands is the number of stroke commands defining the character that follows. CharWidth is the character width, which determines the spacing of the characters.

A command may be in one of the following forms:
Custom Character and Symbol Definition

- \textit{m} \textit{x} \textit{y}.
- \textit{d} \textit{x} \textit{y}.
- \textit{mr} \textit{dx} \textit{dy}.
- \textit{dr} \textit{dx} \textit{dy}.

Where:
- A command that begins with an \textit{m} is a move command.
- A command that begins with a \textit{d} is a draw command.
- Commands \textit{mr} and \textit{dr} are relative move and relative draw commands.
- The \textit{x} and \textit{y} are the absolute coordinates within the character cell.
- The \textit{dx} and \textit{dy} are the relative coordinates with respect to the previous location (increments from the position attained by the previous command).
- All coordinates are specified as integers.

Figure 30-3 shows an example of a character cell and the commands used to define the lowercase letter “y”. The height of the character cell is 48.

Figure 30-3. Defining a user-defined character.

Figure 30-4 shows a symbol being defined. Symbols should generally be centered about (0, 0) so that they are drawn centered on the point they mark (an exception might be an arrow symbol or similar, where you want the arrow’s tip to indicate the marked point). The font file included with Tecplot 360 EX contains many User-Defined font stroke commands. Most of these are for creating extra plotting symbols,
Customization

accessible when you use the Symbol Type "Other", enter an ASCII character, and specify the User-Defined font.

Figure 30-4. Defining a user-defined plotting symbol.
Add-ons

Add-ons are a way to extend the basic functionality of Tecplot 360 EX. They are executable modules designed to perform specific tasks. A number of add-ons are available that load data in a variety of formats, allow advanced editing, or extend Tecplot 360 EX’s capabilities.

Add-ons are external programs that attach themselves to Tecplot 360 EX and are accessed through the Tecplot 360 EX interface. When Tecplot 360 EX launches, it goes through various initialization phases, including the processing of the tecplot.cfg file, the loading of the Tecplot 360 EX stroke font file (tecplot.fnt), and the initialization of the graphics. After completing this, Tecplot 360 EX looks for add-ons.

31 - 1 Add-on Loading

You can load add-ons by several different methods: using the Drag-and-Drop Method, editing the Tecplot.add File, using the Specifying Add-Ons on the Command Line, or by Specifying a Secondary Add-On Load File.

Add-ons created for versions of Tecplot 360 EX prior to Tecplot 360 EX 2014 R1 will not work with Tecplot 360 EX 2018 R2.

31 - 1.1 Drag-and-Drop Method

The easiest method for loading an add-on for a single use is the drag-and-drop method. This method loads the add-on for the current session of Tecplot 360 EX (rather than every subsequent launch of Tecplot 360 EX).

To use this method, find the library file of the add-on you wish to load in the bin subdirectory of your Tecplot 360 EX installation. Select the library, and, while holding down the mouse button, drag the library into the Tecplot 360 EX window. Then release the mouse button to “drop” the add-on into Tecplot 360 EX. The add-on will be loaded and made available immediately.

This action will load the add-on only for the rest of the current Tecplot 360 EX session. The next time you close and reopen Tecplot 360 EX, you will need to load the add-on again if you wish to in the new session.
Add-ons

31 - 1.2 Tecplot.add File

Every time Tecplot 360 EX launches, it reads a file called tecplot.add from the Tecplot 360 EX home directory and loads all add-ons indicated in that tecplot.add file.

The tecplot.add file contains multiple $!LoadAddOn commands that load add-ons into Tecplot 360 EX. This special macro file accepts only $!LoadAddOn macro commands, which require this syntax:

```
$!LoadAddOn "libname"
```

In this example, libname represents the name of an add-on’s shared object library file. The libname must be enclosed in quotes.

To unload an add-on (that is, to prevent Tecplot 360 EX from loading that add-on when launching), comment out the appropriate line in tecplot.add by adding a pound (“#”) symbol in front of the load command. For example, the pound (“#”) symbol at the beginning of the following line will prevent the Auxiliary Data Editor add-on (libname “tecutiltools_editauxdata”) from loading:

```
# $!LoadAddOn "tecutiltools_editauxdata"
```

To load an add-on that does not load automatically, remove the pound (“#”) symbol from in front of the $!LoadAddOn command that includes the libname of the add-on you wish to load. If the tecplot.add file does not list the libname of the add-on you wish to load, add a $!LoadAddOn command followed by the libname of that add-on.

For information on loading the tecplot.add file, see Section 30 - 1 “Custom Files loaded on Startup”.

Libname

Special rules govern how the libname name is specified in the tecplot.add file. In all cases, the filename extension is omitted. If you assign libname to the basename of the shared object library, then Tecplot 360 EX will do the following:

- **Linux** - The shared library to load will come from the file specified by: Install-Directory/1lib/1lib+basename.so.
- **Windows** - Tecplot 360 EX will search for the add-on basename.dll in the following directories (in this order):
 - The directory where the Tecplot 360 EX executable resides.
 - The Windows system directories.
 - The directories in your PATH environment variable.

When using V5ActiveX style add-on libraries on Windows, Tecplot 360 EX connects to the add-on via the libname entry in the registry.

If an absolute path name is used in libname, then on Windows platforms, .dll is appended and on Linux platforms, .so is appended.

31 - 1.3 Specifying Add-Ons on the Command Line

You can also instruct Tecplot 360 EX to load a particular add-on by using the command line. The following flags are available:

```
-loadaddon libname
```

where:

- **libname** - The full name (including path and extension) of an add-on.
Add-ons included in the Tecplot 360 EX distribution

You may specify the -loadaddon flag as many times as you want in a single invocation of Tecplot 360 EX to load more than one add-on.

If your add-on is named with the proper suffix for your platform (.dll for Windows, .so for Linux) you can simply name the add-on on the command line without using the -loadaddon flag.

After add-ons are loaded, Tecplot 360 EX re-processes all command line arguments not processed earlier (for graphics and add-on initialization). This allows a data loader add-on to be used to load data specified on the command line.

31 - 1.4 Specifying a Secondary Add-On Load File

You may also instruct Tecplot 360 EX to load a different list of add-ons by naming a second add-on load file using one of the following methods:

• Include -addonfile addonfilename on the command line.
• Set the environment variable TECADDONFILE.

Both of these methods tell Tecplot 360 EX the name of an additional add-on load file to process. This secondary file will be processed after the main tecplot.add file.

31 - 2 Add-ons included in the Tecplot 360 EX distribution

The following add-ons load automatically when you launch Tecplot 360 EX:

• Data file loaders or converters. These are all named with a tecutildataio prefix.
 - tecutildataio_plot3d - A PLOT3D data loader
 - tecutildataio_loadss - A spreadsheet file data loader
 - tecutildataio_loaddf - A Data eXchange Format (DXF) data loader
 - tecutildataio_loadgen - A general text file loader
 - tecutildataio_loadhdf - A Hierarchical Data Format (HDF) data loader
 - tecutildataio_h5load - An HDF5 data loader
 - tecutildataio_loaddem - A Digital Elevation Map (DEM) data loader
 - tecutildataio_loadcgns - A CFD General Notation System (CGNS) data loader
 - tecutildataio_fluent - A FLUENT data loader for .cas and .dat files, as well as compressed .cas.gz and .dat.gz files (versions 5 to 6.3)
 - tecutildataio_loadensight - An EnSight Gold data loader
 - tecutildataio_loadflow3d - A FLOW3D data loader
 - tecutildataio_loadply - A PLY (polygon) data loader
 - tecutildataio_loadkiva - A KIVA data loader
 - tecutildataio_loadfea - A FEA (Finite Element Analysis) data loader

These loaders show up in the Load Data dialog. See Chapter 4: “Loading Data” for information on working with each data loader.

Your Tecplot 360 EX installation includes the additional add-ons listed following (alphabetically) and described in Section 31 - 3 “Working with Add-ons”. Some of these load automatically with your installation; others require you to load the add-on by uncommenting the appropriate line from your tecplot.add file (located in your Tecplot 360 EX home directory), or by any of the other methods described in Section 31 - 1 “Add-on Loading”.

• Advanced Quick Edit
• Auxiliary Data Editor
• CFD Analyzer (see Chapter 21: “CFD Data Analysis”)
Add-ons

- Create Multiple Frames
- Extend Macro
- Extend Time Macro
- Extract Over Time
- Key Frame Animator
- Measure Distance
- Multi-Frame 3D
- Pick and Change
- Solution Time and Strand Editor
- Tensor Eigensystem
- Time Series
- Write Data as Formatted Text

31 - 3 Working with Add-ons

The default Tecplot 360 EX installation includes the add-ons discussed in this section. To load or unload them, use the methods described in Section 31 - 1 “Add-on Loading”.

31 - 3.1 Advanced Quick Edit

The Advanced Quick Edit add-on, with the libname tecutiltools_advqet, loads automatically, and causes the “Advanced Quick Edit Tool” to appear in the Tools menu. This add-on allows you to make rapid changes to text and geometries selected in the active frame. It also allows additional editing operations that the standard Quick Edit dialog (accessible from the Plot sidebar) does not support.

To unload this add-on, comment out the line in your Tecplot.add File (located in your home directory) that loads the advqet library by adding a “#” symbol at the beginning of the line with the text $!LoadAddon "tecutiltools_advqet".

To use this add-on, select “Advanced Quick Edit Tool” in the Tools menu to open the Advanced Quick Edit Tool dialog.

Controls in the Advanced Quick Edit Tool dialog are active only when you have one or more text and/or geometries selected. Some controls are specific to either text or geometries, while others apply to both. If the selected objects are a mix of text and geometries, the controls that apply only to geometries will affect the specific geometries you have selected. Similarly, controls that apply specifically to text will only affect text, even if the selected objects are a mix of text and geometries.
Working with Add-ons

The Advanced Quick Edit Tool dialog includes the following options:

- **Geometry Coordinate System** - Change selected geometries to the Frame or Grid coordinate system by selecting the appropriate button in the Coord Sys/Char Height region of the dialog. Changing the coordinate system in this dialog will modify each geometry’s anchor position and size so that it appears visually unchanged in your plot.

- **Text Coordinate System and Character Height Units** - Change the position coordinate system and character height units of all selected text by selecting the appropriate button in the Coord Sys/Char Height region of the dialog. There are four valid combinations: [Frame/Frame], [Frame/Point], [Grid/Grid], and [Grid/Frame]. Changing a coordinate system in this dialog will modify each text object’s anchor position and character height so that it appears visually unchanged in your plot.

- **Text Box Margin** - Change the text box margin of all selected text with the [Text Box Margin] button.

- **Text Line Spacing** - Change the line spacing of all selected text by using the [Text Line Spacing] button.

- **Text Anchor Location** - Change the text anchor location for all selected text by selecting one of the nine possible anchor points from the button grid located in the Text Anchor Location region of the dialog.

- **Text and Geometry Scope** - Change the scope of all selected text and geometries by selecting either [Local] or [Global] scope. Objects with local scope appear only in the frame in which they were originally created. If the objects are defined as having global scope they will appear in all “like” frames, that is, those frames using the same data set as the one in which the objects were originally created.

- **Text and Geometry Zone or Map Attachment** - Change the zone or map with which the selected text or geometries are associated by selecting Zone Attachment [Select]. This calls up the Attachment Selection dialog. The Attachment Selection dialog lists zone names or numbers when Tecplot 360 EX is in the 2D or 3D Cartesian or Sketch plot types, and mappings when Tecplot 360 EX is in the XY Line plot type. The “<Unattach Object>” entry dissociates each selected text or geometry from its zone or map.

31.3.2 Auxiliary Data Editor

The Auxiliary Data Editor add-on loads automatically with Tecplot 360 EX. This add-on enables you to edit auxiliary data within Tecplot 360 EX and journal the results into the saved layout file. To unload the add-on, comment out the line including the libname tecutils-editauxdata in your Tecplot.add File.

Auxiliary data are name-value pairs associated with a data set, frame, line map, page, variable, or zone, which Tecplot 360 EX stores as text strings. You can view all auxiliary data included in your layout in the Data Set Information dialog (by going to Data>Data Set Info).

To use this add-on, select “Auxiliary Data” from the Data menu to open the Edit Auxiliary Data dialog.
The **Edit Auxiliary Data** dialog contains the following controls:

- **Show auxiliary data** - In the drop-down menu at the top of the dialog, select the level at which you wish to view, add or delete auxiliary data. Choose from Zones, Variables, Line Maps, Active Frame, Active Page, Data Set, Layout, or Everything.

- **Auxiliary data box** - In the box in the middle of the dialog, all auxiliary data for the selected level will display. You can select any item in this box to edit it or delete it, with the [Edit] button or [Delete] button, respectively.

- **Add auxiliary data** - With the [Add] button, you can add auxiliary data at any of the available locations (zone, variable, etc.).

- **Edit auxiliary data** - With the [Edit] button, you can edit any existing auxiliary data. First select the item you wish to edit in the Auxiliary data box, and then select the [Edit] button.

- **Delete auxiliary data** - Use the [Delete] button to delete any existing auxiliary data. Select the item you wish to delete in the Auxiliary data box, and then select the [Delete] button.

You can view auxiliary data on the Aux Data page of the **Data Set Information** dialog (accessible by going to Data>Data Set Info).

Tecplot 360 EX will journal all added or edited auxiliary data to layout and packaged layout files when you save your layout or packaged layout file after editing the auxiliary data.

Macro Commands

You can add auxiliary data using the `$!EXTENDEDCOMMAND` macro, with the following syntax:

```
$!EXTENDEDCOMMAND
COMMANDPROCESSORID = 'Aux Data Editor'
COMMAND = '<operator> Name = <string> Value = <string> Location = <location>
LocationIndex = 1'
```

With this syntax, the following rules apply:

- **Operator** - Use "Add" or "Delete" as the operator
- **Name** - Use an alphabetic character followed by zero or additional alphanumeric characters and underscores (no spaces)
- **Value** - Use a value only for the Add operator, to associate a value to the named data piece. Surround the value with quotation marks if it has spaces
- **Location** - Use Zone, Var, Frame, Page, DataSet, LineMap, or Layout as the location
- **LocationIndex** - This value indicates which Zone, Var, Frame, or LineMap to which Tecplot 360 EX attaches the auxiliary data. If adding auxiliary data to a Page or DataSet, do not indicate a LocationIndex.
Following is an example of a macro command adding an auxiliary data piece named “TestID” with the value of “Sequence 23, test 2” to the first zone.

```
$!EXTENDEDCOMMAND PROCESSORID = 'Aux Data Editor'
COMMAND = "Add Name = TestID Value = "Sequence 23, test 2" Location = Zone LocationIndex = 1"
```

Adding Auxiliary Data

The Add Auxiliary Data dialog enables you to add auxiliary data at any of several levels. To reach this dialog, select the [Add] button in the Edit Auxiliary Data dialog. Data added in the Add Auxiliary Data dialog will subsequently appear in the Edit Auxiliary Data dialog, in the Auxiliary Data display box. The Add Auxiliary Data dialog has the following controls:

- **Location** - Choose the level at which to add the data from the Location drop-down menu. You can choose to add it at the zone, variable, line map, active frame, active page, layout, or dataset level.
- **Number** - When the Location indicates “Zone”, “Variable”, or “Line Map”, the Number box will activate for you to specify the Zone Number, Variable Number, or Line Map number at which to add the auxiliary data.
- **Name** - Enter the name of your data in the Name box.
- **Value** - Enter the value of your data in the Value box.

Select the [OK] button in the Add Auxiliary Data dialog to finish adding a piece of auxiliary data to the selected location.

31.3.3 Create Multiple Frames

Use the Create Multiple Frames add-on to make a set of new frames with uniform size and spacing within the active frame. This add-on does not load automatically; load this add-on using “tecutiltools_mulframe” as the libname in one of the methods discussed in Section 31.1 “Add-on Loading”.

To use this add-on, select “Create Multiple Frames” in the Tools menu. This will open the Create Multiple Frames dialog.

The Create Multiple Frames dialog has the following options:

- **Frames Across** - Enter the number of frames to be displayed in each row of frames.
- **Frames Down** - Enter the number of rows of frames.
- **Space Between Frames** - Enter the amount of space to display between each frame in each direction, in paper ruler units.

Select the [Create] button to create the multiple frames as specified.

See Section 3.2.2 “Frame Creation” for information on creating a single frame.

31.3.4 Extend Macro

The Extend Macro add-on, libname “tecutilscript_extendmcr”, extends the Tecplot macro language to include additional commands. You may use the Extend Macro add-on by adding the following function call to your macro file:

```
$!EXTENDEDCOMMAND PROCESSORID = 'extendmcr' COMMAND = 'command option'
```
Add-ons

The commands supported by the add-on are listed in the following table.

When specifying a macro variable name in an Extend Macro command, you should not surround the variable name with vertical bars. For example, ZONENUM rather than |ZONENUM|.

<table>
<thead>
<tr>
<th>Command</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY.ZONENAMEBYNUM nnn VVV</td>
<td>Get the string for zone nnn and assign to variable VVV.</td>
</tr>
<tr>
<td>QUERY.VARNAMEBYNUM nnn VVV</td>
<td>Get the string for variable nnn and assign to variable VVV.</td>
</tr>
<tr>
<td>QUERY.ZONENUMBYNAME “zonename” VVV</td>
<td>Get the number of zone named zonename and assign to variable VVV.</td>
</tr>
</tbody>
</table>
| QUERY.VARNUMBYASSIGNMENT assignment VVV | Get the number of variable by assignment and assign to variable VVV. VVV may have any of the following values:
 • X, Y or Z - Variable assigned to the X, Y or Z-axis.
 • U, V or W - Variable assigned to be the U, V or W-vector component.
 • C - Variable assigned to contours.
 • S - Variable assigned to scatter sizing.
 • B - Variable assigned to the first constraint for value-blanking. |
| QUERY.DATASETITLE VVV | Get the string for the dataset title and assign to variable VVV. |
| STRING.LENGTH StrSource VVV | Get the length of string StrSource and assign to variable VVV. |
| STRING.FINDPATTERN StrSource StrPattern VVV | Get the sub-string from StrSource starting at pattern StrPattern and going to the end of StrSource. Returns "NOTFOUND" if not found. |
| STRING.SUBSTRING StrSource start end VVV | Get the sub-string from StrSource starting at position start and ending at position end. Put the result in VVV. |
| QUERY.ACTIVEZONES VVV | Get the set of active zones and put the result in VVV.
 Note: The set string does not include any blank spaces. If zones 2, 4, 6, 7 and 8 are active, VVV would have the string "2, 4, 6-8." |
| QUERY.MAPNAMEBYNUM nnn VVV | Returns a string (the name of the map) and places it in variable VVV. The active plot must be XY-Line or Polar-Line. |
| QUERY.ISADDONLOADED COMMANDPROCESSORID VVV | Return "YES" if Add-on COMMANDPROCESSORID is loaded, otherwise return "NO". |
| QUERY.FILEEXISTS “filename” VVV | If the file exists, VVV will be “YES” otherwise VVV will be “NO” |

Table 31 - 3: Command Options for Extend Macro
If you have declared macro variables and would like to use them with the Extend Macro add-on, you can do so by surrounding the command call with single quotes and the macro variable with double-quotes. For example:

```plaintext
$!VarSet |ZoneName| = "Unknown"
$!EXTENDEDCOMMAND
  COMMANDPROCESSORID = "extendmcr"
  Command = 'query.zonenamebynum 1 "ZoneName"'
$!RemoveVar |ZoneName|
```

Refer to the Scripting Guide for additional information on working with Tecplot 360 EX's macro language.

QUERY.DATASETITLE

The following example, uses the QUERY.DATASETITLE command to place the title of the dataset at a specific position on the plot.

```plaintext
$!VARSET |ZNUM| = "blank"
$!EXTENDEDCOMMAND COMMANDPROCESSORID='extendmcr'
  COMMAND='QUERY.DATASETITLE ZNUM'
$!ATTACHTEXT
  XYPOS
  X = 5
  Y = 90
  TEXT = "Title is: |ZNUM|
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY.ISZONEACTIVE ZZZ VVV</td>
<td>Test to see if zone ZZZ is active. If so, VVV is set to “YES,” otherwise it is set to “NO.”</td>
</tr>
<tr>
<td>QUERY.LINEMAPZONEASSIGNMENT nnn VVV</td>
<td>Get the zone number assigned to line map nnm and put the result in VVV.</td>
</tr>
<tr>
<td>QUERY.ACTIVELINEMAPS VVV</td>
<td>Get the set of active line maps and put the result in VVV. Note: The set string does not include any blank spaces. If linemaps 2, 4, 6, 7, and 8 are active, VVV would have the string "2,4,6-8.”</td>
</tr>
<tr>
<td>QUERY.ISLINEMAPACTIVE nnm VVV</td>
<td>Test to see if line map nnm is active. If so, VVV is set to “YES,” otherwise it is set to “NO.” VVV is set to “INVALID” if nnm <=0.</td>
</tr>
<tr>
<td>FILE.APPENDSTRING “FileName” “String”</td>
<td>Appends the given string to the indicated file, creating the file if necessary. FileName may be a relative path from Tecplot's working directory or an absolute path.</td>
</tr>
<tr>
<td>FILE.APPENDLASTERROR “FileName”</td>
<td>Appends the last error message, if any, to the indicated file, creating the file if necessary. FileName may be a relative path from Tecplot's working directory or an absolute path. If no Tecplot errors have occurred, this command will have no effect.</td>
</tr>
</tbody>
</table>

Table 31 - 3: Command Options for Extend Macro

If you have declared macro variables and would like to use them with the Extend Macro add-on, you can do so by surrounding the command call with single quotes and the macro variable with double-quotes. For example:

```
$!VARSet [ZoneName] = "Unknown"
$!EXTENDEDCOMMAND
  COMMANDPROCESSORID = "extendmcr"
  Command = 'query.zonenamebynum 1 "ZoneName"'
$!RemoveVar [ZoneName]
```
Add-ons

QUERY.VARNAMENGNUM

The following example uses QUERY.VARNAMENGNUM to place the name of variable 2 at a specific position on the plot.

```
$!VARSET |VNAME| = "X"

$!EXTENDEDCOMMAND COMMANDPROCESSORID = 'extendmcr'
COMMAND= "QUERY.VARNAMENGNUM 2 VNAME"

$!ATTACHTEXT
XYPOS
{
  X = 5
  Y = 85
}
TEXT = "Var 2 is: |VNAME|"
```

QUERY.ZONAMENGNUM

The following example uses QUERY.ZONAMENGNUM to place the title of Zone 1 at a specific position on the plot.

```
$!VARSET |ZNAME| = "HELLO"

$!EXTENDEDCOMMAND COMMANDPROCESSORID = 'extendmcr'
COMMAND= "QUERY.ZONAMENGNUM 1 ZNAME"

$!ATTACHTEXT
XYPOS
{
  X = 5
  Y = 80
}
TEXT = "Zone is: |ZNAME|"
```

The follow example uses QUERY.ACTIVEZONES to display a list of the active zones.

```
$!VARSET |ZNUMS| = "blank"

$!EXTENDEDCOMMAND COMMANDPROCESSORID = 'extendmcr'
COMMAND= "QUERY.ACTIVEZONES ZNUMS"

$!ATTACHTEXT
XYPOS
{
  X = 5
  Y = 70
}
TEXT = "Active zones are: |ZNUMS|"
```

Refer to the Scripting Guide for additional information on working with Tecplot 360 EX's macro language.

31 - 3.5 Extend Time Macro

The Extend Time Macro add-on simplifies the macro interface by allowing you to use a simple loop to query the number of solution times in the dataset and advance the time step. This differs from the native Tecplot macro language as it does not require that you know the solution time of your data.

This add-on uses a different algorithm than Tecplot 360 EX for sorting the solution times. Because Tecplot 360 EX combines time steps that are sufficiently close together, the number of time steps reported by this add-on may differ from the number of time steps reported by Tecplot 360 EX.
Working with Add-ons

You can load this add-on by adding the following line to your Tecplot.add File:

```
$!LoadAddOn "tecutilscript_extendtimemcr"
```

Macro Processing

The Extend Time Macro add-on can be invoked from the macro language by using the following commands:

1. These two lines retrieve the number of time steps. This number is represented here as the macro variable VVV.

   ```
   $!EXTENDEDCOMMAND COMMANDPROCESSORID='extend time mcr'
   COMMAND='QUERY.NUMTIMESTEPS VVV'
   ```

2. This line sets the solution time at time step nnn. The acceptable value range number for nnn is: 1 - NumTimeSteps.

   ```
   $!EXTENDEDCOMMAND COMMANDPROCESSORID='extend time mcr'
   COMMAND='SET.CURTIMESTEP nnn'
   ```

3. This line retrieves the solution time at time step nnn. This number is represented here as the macro variable VVV.

   ```
   $!EXTENDEDCOMMAND COMMANDPROCESSORID='extend time mcr'
   COMMAND='QUERY.TIMEATSTEP nnn VVV'
   ```

The following is a sample loop that uses the Extend Time Macro add-on:

```
$!EXTENDEDCOMMAND COMMANDPROCESSORID='extend time mcr'
COMMAND='QUERY.NUMTIMESTEPS NUMTIMESTEPS'
$!LOOP NUMTIMESTEPS
$!EXTENDEDCOMMAND COMMANDPROCESSORID='extend time mcr'
COMMAND='SET.CURTIMESTEP |LOOP|
$!EXTENDEDCOMMAND COMMANDPROCESSORID='extend time mcr'
COMMAND='QUERY.TIMEATSTEP |LOOP| CURTIME'
$!PAUSE "Current time is: |CURTIME|
$!ENDLOOP
```

See also: Section 31 - 3.6 “Extract Over Time”, Section 31 - 3.12 “Solution Time and Strand Editor”, Section 31 - 3.4 “Extend Macro”, Section 31 - 3.14 “Time Series”, Section 7 - 2 “Time Aware”.

31 - 3.6 Extract Over Time

The Extract Over Time add-on, which loads automatically with Tecplot 360 EX, extracts slices, isosurfaces, streamtraces, and points from polyline geometries in transient data. The resulting zones are assembled into a new strand with proper solution times set for each zone:

To save a layout file, you must also save a data file when using this add-on.

To unload this add-on, add a "#" symbol in front of the following line in your Tecplot.add File.

```
$!LoadAddOn "tecutiltools_extractovertime"
```

To use this add-on, go to Data>Extract and selecting one of the following menu options.
Add-ons

- **Extract Slices Over Time** - The frame must be in 3D, contain one or more slices, and contain transient data.
- **Extract Iso-Surfaces Over Time** - The frame must be in 3D, contain one or more iso-surfaces, and contain transient data.
- **Extract Streamtraces Over Time** - The frame must be in 2D or 3D, contain one or more streamtraces, and contain transient data.
- **Extract Geometries Over Time** - The frame must be in 2D or 3D, have exactly one polyline geometry selected, and contain transient data. When the menu option is selected, you will be prompted for the number of points along the polyline to extract.

After extracting, the new strand is available and may be animated or saved to a file.

Macro Processing

The Extract Over Time add-on can be invoked from the macro language by using the following commands:

```
Slices
$EXTENDEDCOMMAND COMMANDPROCESSORID='Extract Over Time'
COMMAND='ExtractSliceOverTime'

Iso-Surfaces
$EXTENDEDCOMMAND COMMANDPROCESSORID='Extract Over Time'
COMMAND='ExtractIsoSurfaceOverTime'

Streamtraces
$EXTENDEDCOMMAND COMMANDPROCESSORID='Extract Over Time'
COMMAND='ExtractStreamOverTime'

Geometries
$EXTENDEDCOMMAND COMMANDPROCESSORID='Extract Over Time'
COMMAND='ExtractGeomOverTime'
Optionally, you may specify the number of points to extract by using the following format:
$EXTENDEDCOMMAND COMMANDPROCESSORID='Extract Over Time'
COMMAND='ExtractGeomOverTime:nnn'
Where nnn >= 2. If this condition is not met when the macro is played back, the action will silently fail and your macro will continue processing.
```

See also: Section 31 - 3.5 “Extend Time Macro”, Section 31 - 3.12 “Solution Time and Strand Editor”, Section 31 - 3.4 “Extend Macro”, Section 31 - 3.14 “Time Series”, Section 7 - 2 “Time Aware”.

31 - 3.7 Extract Precise Line

The Extract Precise Line add-on (libname: tecutiltools_extractpreciseline) allows you to extract points along a line to a new zone or to a Tecplot ASCII data file. You specify the precise X, Y, and Z coordinates of the start and the end points of the line, along with the number of points along this line to extract.
To use the Extract Precise Line add-on, choose Data > Extract > Extract Precise Line.

- **Start, End X/Y/Z** - Enter the X, Y, and Z coordinates of the start and end points of the line.
- **Number of Points** - The number of points between the start and end points to be extracted. (The start and end points themselves are always extracted and this number does not include them.)
- **Extract To** - Whether to extract to a zone or a file. If extracting to a file, you must also specify an output file path in the File Name field.
- **Extract From** - Choose whether to extract from the surface the line passes across or the volume it passes through.

 When extracting from a surface in 3D, extraction is view-dependent: the specified line is projected from the plane of the screen onto the surface being extracted. Changing the view (e.g. rotating) will change the points extracted.
- **File Name** - The path of the file to extract to. You may type the path, paste it, or click the ... button to open the Write Tecplot ASCII File dialog and navigate interactively.

Click **Extract** to perform the extraction.

Macro Processing

There is no macro command syntax specific to this add-on. Instead, it records an $!EXTRACTFROMPOLYLINE command. See the Scripting Guide for more details on this command.

31 - 3.8 Key Frame Animator

The Key Frame Animator add-on loads automatically with Tecplot 360 EX. With this add-on, you can easily animate a smooth progression through two or more specified views (key frames) and export them as an AVI, Flash, or Raster Metafile animation.

To use this add-on, first create a layout and use the 3D Cartesian mode to view your plot. Then select “Key Frame Animation” in the Animate menu to open the Key Frame Animation dialog.

You must be in 3D Cartesian mode to use the Key Frame Animator add-on.

To unload this add-on, comment out the line containing the `#libname “tecutiltools_keyframe”` in your Tecplot.add File.
To create a key frame animation using this dialog, follow these general steps:

1. Rotate and/or zoom the plot to the initial view for the animation, and select the [Append] button in the dialog. If you wish, you may change the name of the view (key frame) by selecting the frame (“View 1”) in the Key Frame box and editing the name in the View Name field of the dialog (for example, “End of Airfoil”).

2. Rotate and/or zoom the plot to the next view you wish your animation to include, and select the [Append] button to add that view to the end of the animation. Or you can select the [Insert] button to insert a view above the selected one in the list. These key frames are snapshots of the view in Tecplot 360 EX, so limit rotations to 180 degrees or less between key frames, or the animation may not rotate as you expect.

3. Continue to rotate and/or zoom and select [Append] or [Insert] to add additional key frames to your animation, if desired.

4. When finished adding key frames, select [Animate All] to perform a complete animation of your views, or [Animate Selected] to animate only the views selected in the Key Frame box. Tecplot 360 EX will interpolate all views in between your views to create an animation.

5. To export an animation, change the Destination from “On Screen” to “To File”. Then select the [Animate All] or [Animate Selected] to open the Export Options dialog. You can choose to export the file as AVI, Flash, or Raster Metafile. Refer to Chapter 25: “Exporting” for details on exporting your file.

The Key Frame Animation dialog includes these controls:

- **Append** - The [Append] button adds the current view in the active frame to the list.
- **Insert** - Use the [Insert] button to insert the current view above the currently selected view in the key frame list.
- **Update** - The [Update] button replaces the view selected in the list with the current view in Tecplot 360 EX. This also re-captures the current solution time.
- **Apply** - Use the [Apply] button to display the selected view as the current view of your plot.
- **Delete** - Select the [Delete] button to delete the selected key frame from the list.
- **Clear** - Use the [Clear] button will delete all key frames from the list.
- **View Name** - Use the View Name field to rename the view selected in the key frame list. By default, Tecplot 360 EX names the views as “View 1”, “View 2”, etc.
- **Frame Count** - The Frame Count box sets the number of frames drawn by Tecplot 360 EX between the selected view and the next view in the animation.
- **Destination** - In the Destination drop-down menu, choose whether to animate the key frames On Screen or To File.
- **Animate All** - Select [Animate All] to animate through all the key frames in the list.
• Animate Selected - Select [Animate Selected] to animate only the selected views. This allows you to refine a subset of animation without performing the complete animation.

Animation Customizations

The Key Frame Animator add-on includes additional capabilities in customized [File] and [Options] menus at the top of the Key Frame Animation dialog. These menus give you the following additional options:

- **File>Open/Save Animation** - In the File menu, you can save an animation that you have created, or you can open an animation that you have previously saved. An animation file stores settings and all key frames, and defaults to the name `animation.keyframe`. The ability to save and load animation files enables you to keep track of created animations without having to recreate them.

- **Options** - In the Options menu, each choice is a toggle except for “Time Animation Options” (which opens the Time Animation Options dialog). Select an option from this menu to turn on that preference. When an option is toggled-on, a checkmark will appear next to that option in the Options menu.

 - Animate Time Concurrently - Select this option to animate time when animating the key frames, as specified in the Time Animation Options dialog.

 - Animate Streamtraces Concurrently - If streamtraces display as markers or dashes in your plot, enable “Animate Streamtraces Concurrently” to animate streamtrace markers or dashes concurrently with key frame animation.

 - Fade In/Fade Out - Toggle-on “Fade In” and/or “Fade Out” to fade lighting intensity and background lighting during the start and/or end of the key frame animation. The fade will last either 30 frames or the first ten percent of all frames, whichever is shorter. Fade In and Fade Out work best with a black background and without any plot features that do not have light sensitivity (mesh lines, edge lines, etc.).

Time Animation Options

Time Animation Options - With the Time Animation Options dialog (opened by selecting “Time Animation Options” in the Options menu), you can specify additional options for animating your key frames. Choose to animate the frames by any of the following methods.

- **Forward** - With “Forward” selected, Tecplot 360 EX will display the earliest solution time in the first key frame, and will progress solution time throughout key frame animation so that the latest solution time displays with the final frame of the animation.

- **Loop** - With “Loop” selected, the solution time will progress as in the “Forward” option, except that the complete cycle of solution times displays multiple times over one key frame animation cycle. Set the number of solution time cycles to display in the Num Cycles box.

- **Bounce** - With “Bounce” selected, the solution time will progress forward during animation, until the solution time cycle completes. The solution time will then decrement in equal intervals until the initial solution time displays. Specify the number of times to repeat this bounce in the Num Cycles box.

- **As Captured** - Select “As Selected” to link each key frame with the solution time that the frame displayed when that frame was added to the key frame list. During the key frame animation, the solution time will vary in equal intervals between successive pairs of key frames so that each key frame displays the linked solution time.

See Also: Section 31 - 3.8 “Key Frame Animator”.
Add-ons

Export Animation Options

In the **Key Frame Animation** dialog, when animating a set of key frames, you can export your animation by selecting “To File” from the Destination drop-down menu. Then select either [Animate All] or [Animate Selected] to launch the **Export Options** dialog. In this dialog, you can customize the export settings for your animation. Then select [OK] to select file location and export your animation.

The **Export Options** dialog includes the following export settings for your animation:

- **Format** - Select the format of your exported file.
- **Region** - Select the portion of your workspace that you wish to export. You can export the Active Frame, All Frames, or the entire Work Area.
- **Width** - Choose the width of the exported animation. You can use the default width of image on screen, or enter your own dimensions.
- **Animation Speed** - Enter a number to indicate how quickly you would like your animation to progress, in units of frames per second.
- **Antialiasing** - Toggle on “Antialiasing” to use antialiasing in your exported animation. For more information on antialiasing, refer to Section 25.4 “Antialiasing Images”.
- **AVI Compression** - If exporting as AVI, select the manner in which to compress your animation, if at all. A compressed export will result in a lower-resolution animation with a smaller file size.
- **Image Type** - If exporting as Flash, choose the type of image on which to base your animation.
- **Optimize** - With the two Optimize choices at the bottom of the dialog, you can choose to optimize your animation for either faster speed or smaller file size.

Macro Processing

To invoke the Key Frame Animator from the macro language, use the following commands:

Save Animation File:

```plaintext
$!EXTENDCOMMAND COMMANDPROCESSORID = 'Key Frame Animation' COMMAND = 'Animate AnimationDestination=<animationdest>'
```

In this command, use either OnScreen or ToFile for the `<animationdest>`.

Open Animation File:

```plaintext
$!EXTENDCOMMAND COMMANDPROCESSORID = 'Key Frame Animation' COMMAND = 'OpenSettingsFile FileName = <string>'
```

Use the $!ExportSetup commands to set up the necessary parameters for exporting to file (to set format, filename, etc.)

See Also: Section 31.3.8 “Key Frame Animator”

31 - 3.9 Measure Distance

The Measure Distance add-on loads automatically with Tecplot 360 EX by default. Its library name is `tecutiltools_measuredistance` and it can be disabled by placing a hash or pound character (#) at the beginning of the following line to your `Tecplot.add` file:

```plaintext
$!LOADADDON tecutiltools_measuredistance
```

The Measure Distance add-on provides two menu items on the Tools pull-down menu, which are available only in 3D and 2D cartesian plots.
• **Measure Distance** - Choose this command from the Tools menu, then click two points on your plot. After the second click, a dialog appears indicating the coordinates of the two points, the differences in their coordinates, and the linear distance between the two points.

In three dimensions, the distance measured is the shortest distance between the different points selected and does not follow the surfaces. In two dimensions, the distance is in the 2D plane.

• **Measure Angle** - Choose this command from the Tools menu, then click three points on your plot. After the third click, a dialog appears indicating the distance from point 1 to point 2, the distance from point 2 to point 3, and the angle in radians and degrees.

In three dimensions, the angle measured is the angle between vectors 1-2 and 2-3 in the plane defined by points 1, 2, and 3. In two dimensions the angle is in the 2D plane.

31 - 3.10 Multi-Frame 3D

The Multi-Frame 3D add-on, which loads automatically with Tecplot 360 EX, adds two menu items to the Frame pull-down menu: Tile Frames and 3D Multi-Frames. Each command displays a small dialog giving you options for managing the frames in your plot.

To unload this add-on, add a “#” symbol in front of the following line in your Tecplot.add File:

```
$LOADADDON  "tecutiltools_multiframe3d"
```

Tile Frames

The Tile Frames dialog lets you quickly arrange multiple frames on a page in a variety of layouts.

Clockwise from upper left, these are:

- **Square** - Frames are made as close to square as possible and arranged in a grid with approximately equal numbers of rows and columns.
- **Wrap** - The first frame is displayed in a larger size and the rest of the frames are wrapped around the right and bottom edge. The size of the main frame depends on the number of additional frames that need to be wrapped around the page.
- **Horizontal** - Equal-size horizontal frames are stacked vertically.
- **Vertical** - Equal-sized vertical frames are arranged horizontally.

When frames are resized, no attempt is made to re-fit the data to them. If a frame's aspect ratio changes, data may no longer fit the frame as it did before tiling.
Add-ons

3D Multi-Frames

The 3D Multi-frames dialog, available only when the active frame is in 3D Cartesian mode, creates three additional frames displaying top (XY), front (XZ), and side (YZ) views of the 3D frame.

You may choose from five options for arranging the frames. Four of these options use a large frame for the original 3D frame and place the top, front, and side views along the top, bottom, or side of the large frame. For these views, the slider chooses the size of the large frame from 25% to 75% of the paper area. A grid arrangement giving equal prominence to all four frames is also provided. The button with the red X is for deleting the auxiliary frames (they may also be deleted manually).

When the new frames are created, the data and styles are shared with the original frame, and the new views are fit to their frames. The program also links field layer toggles, such as Mesh, Contour, Lighting, and so forth, so that a change in one frame is automatically reflected in the others.

Macro Processing

To tile frames using the Tecplot macro language, use the following command.

```
COMMANDPROCESSORID = 'Multi Frame Manager'
COMMAND = 'TILEFRAMESSQUARE'
```

The command can be TILEFRAMESSQUARE, TILEFRAMESVERT, TILEFRAMEZHORIZ, or TILEFRAMESWRAP.

To generate the top/front/side frames from a 3D view, use the following command.

```
COMMANDPROCESSORID = 'Multi Frame Manager'
COMMAND = 'MAKEFRAMES3D ARRANGE=LEFT SIZE=25'
```

ARRANGE may be LEFT, TOP, RIGHT, BOTTOM, or TILE, and the first four accept the SIZE parameter, which indicates a percentage of the paper size and can be 25-75.

To delete the top/front/side frames, use the following command.

```
COMMANDPROCESSORID = 'Multi Frame Manager'
COMMAND = 'DELETEFRAMES3D'
```
Data>Pick and Change) allows you to do simple data alterations or assignments to a selected portion of your dataset. You choose which elements to alter by either selecting individual cells or nodes, or by using simple geometries to define a boundary around the area that contains the desired cells or nodes. You can use the add-on in two modes.

- The Alter mode allows you to choose the variable to be modified and to either assign a new constant value or make simple modifications to the existing value.
- The Blank mode is used to selectively blank areas of your data, allowing you to focus on areas of interest.

Pick and Change requires a data set in either 2D or 3D Cartesian mode (it does not work on line maps). The data may be either ordered or finite element and may be either cell-centered or nodal. Select Data > Pick and Change to bring up this dialog:

The following procedure is the typical Pick and Change workflow.

1. Choose the mode (Alter or Blank) by choosing the tab at the top of the dialog.
2. For Alter mode, choose the variable to be altered and the modifier, which defines the alteration. For Blank mode, use the check box to activate blanking.
3. Choose the inside/outside rule. When using a boundary, you can tell the program to apply the alteration to elements either inside or outside the boundary.
4. If the variable is cell-centered or when using blanking mode, you must also decide whether all nodes (corners) of the cell must be included by the boundary, or whether any corner of the cell satisfies the inside/outside rule.
5. Choose the pick mode using the toggle buttons. From left to right, the mode options are single element, rectangular boundary, circular boundary, irregular boundary, 3D cube boundary, and 3D sphere boundary.

Pick and Change is considered prototype software and may contain bugs. It is not enabled by default in this release of Tecplot 360 EX. To enable it, make sure the following line is in your tecplot.add file: $!LoadAddon “tecutiltools_pickalter” (or use one of the other methods in Section 31 - 1 "Add-on Loading" to load it).
• For single element picks, the operation will be applied as soon as you click the node or cell.
• For 2D geometries, use the mouse to draw a new boundary or select an existing boundary, then press the Apply button.
• For 3D boundaries, additional controls will appear on the dialog allowing you to precisely define the anchor point and dimensions. When the boundary is correct, press the Apply button to make the changes.

Choosing a Variable

When using the Alter mode, all variables in the current data set will be displayed in a list. You may wish to choose the same variable to be displayed as your contour variable in order to see the results of your alterations. The program will do this for you if you toggle-on Sync C1 Contours. When this function is active, changing the variable in the Pick & Change dialog will also change the variable assigned to contour group 1 in your plot. The opposite is not true: changing the C1 variable by way of the Contour Details dialog does not change the selection in this dialog.

Variables may be nodal or cell-centered, and this may impact how you make selections. For example, if your pick option is for a single element and the variable is nodal, you must use Control-Click to snap to the nearest point. If the variable is cell-centered, clicking anywhere on a cell face works, but you should not use the Control key. If the variable is cell-centered, this also impacts the inside/outside option.

Modifying Variables

The modifier is composed of an operand and a value that defines how the selected variable will be altered. Supported operands are =, +, -, *, and /, for assign, add, subtract, multiply, and divide, respectively. If no operand is included, assignment is assumed. For example:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>=100 or 100</td>
<td>Assigns the value 100 to the selected variable for picked elements.</td>
</tr>
<tr>
<td>-60</td>
<td>Subtracts 60 from the current value.</td>
</tr>
<tr>
<td>*= -60</td>
<td>Assigns a value of -60.</td>
</tr>
<tr>
<td>* 1.5</td>
<td>Multiplies the current value by 1.5</td>
</tr>
<tr>
<td>/ 4</td>
<td>Divides the current value by 4.</td>
</tr>
</tbody>
</table>

Choosing a Pick Mode

The pick mode determines the method used for choosing the elements to be altered. Once you select a mode, it remains in effect until you choose another mode or toggle it off. There are three general categories: A single element (cell or node), a 2D boundary, or a 3D boundary.

• Single Elements

When using the single element option, the mouse pointer changes to a crosshair as it does when you do a probe. When you click an element (or Control-Click for nodes if the variable is nodal) the alteration is applied immediately.

• 2D Boundaries

2D boundaries are created just like geometries. You may also select these modes using the buttons on the main toolbar. Ellipse boundaries are not supported.
When defining a boundary using the irregular polygon option, it is not necessary to try to click back to the starting point. The add-on will automatically close the path for you. Sides may be concave but lines should not intersect.

When using a 2D boundary on a 3D data set, the program will drill through the data to find elements that fall behind the visible surfaces. The alterations are NOT limited to just the cells you can see. The drilling direction is determined by the line-of-sight on the image that is displayed on the screen.

Because drilling of this nature is often more useful when done on an orthogonal axis, there are buttons in the Pick & Change dialog that allow you to easily switch to an XY, XZ, or YZ view. The 3D button will return to your initial view.

If multiple geometries exist in a frame, you will need to identify the one to be used for the pick operation. With the mouse pointer in select mode, simply click on the geometry. Pick handles appear to verify your selection.

Only one geometry at a time can be selected for the Pick & Change operation. You can reuse geometries for Undo operations or to alter multiple variables, and you can also move them around to easily apply changes in different areas.

Once the dimensions and position are as desired, click Apply to make the changes.

3D Boundaries

A 3D boundary is available only when the frame is in 3D Cartesian mode. When this mode is selected, additional controls appear on the dialog, allowing you to precisely set the boundary configuration. A cube is defined by its anchor point and dimensions, a sphere by its center and radius.

You can use the spin controls or enter values directly in the text boxes. An outline of the boundary appears on the plot and is updated as the values change. By default, only the edges are shown; turn on the Shade toggle to display shaded boundary faces, which may provide a better sense of what is inside or outside the box. (You must also have the Shade layer activated on the Plot sidebar to see shaded boundary faces.)

Once the dimensions and position are as desired, click Apply to make the changes.

Selecting Inside or Outside a Boundary

When using either a 2D or 3D boundary, you can elect to apply the modifications to either the elements falling inside or outside the boundary using a drop-down menu.

If the variable is cell-centered, the add-on needs to determine whether the cell falls inside or outside the boundary. In this case, you can differentiate according to whether a single node (corner) of the cell is sufficient to make the determination, or whether all nodes must meet the inside/outside condition. A second menu gives you this option.

If the variable is nodal, the add-on needs only the inside or outside option for Alter mode. The Blanking mode, however, applies to whole cells, and does require the any/all option.

The determination about whether to include the cell is dependent on the cell corners and not the cell body. For example, you could have the situation shown here. Even though several cells intersect the boundary, since none of the corners fall inside the boundary, the cell would not be picked.

Applying Changes

Except when selecting individual elements, the Apply button is always needed to initiate your changes. You may also use the button to perform multiple alterations in a single area: after completing one operation, change the variable and/or modifier as appropriate and click Apply again.
Add-ons

Undoing Changes

When using the Alter mode, you may be able to undo your last alter operation by pressing the **Undo Last Alter** button, subject to the following limitations:

- Only a single operation can be undone.
- Assignment modifications (i.e. =30) may not be undone.
- Mathematical operations are undone by applying the inverse operation. For this reason, the undone alteration may not exactly match the original value, though it will be very close. (This is a limitation of the floating-point representation used internally.)
- The alteration must be undone immediately after its original application, and any pick boundary must be in its original size and location. Most changes to options, styles, or the view will disable the **Undo** button.

In the Blank mode, the button reads **Undo all pick blanks**. In this case, all elements previously blanked using the Pick & Change add-on will be reset so they are again visible. Blanking criteria that you set independently using the **Plot > Blanking** options, though, will not be affected.

Which Elements Are Picked

- **Zones**

 Pick & Change works on only active zones. If you are working with transient data, only the zones that are relevant to the current time step are altered.

 In general, this means that if you can't see the zone then it won't be altered. However, it is possible to have an active zone that isn't visible, for example if you had Zone Show turned on but turned off all the layers (mesh, contour, scatter, etc.). If in doubt, see the Zone Style dialog.

- **Blanked Elements**

 If part of the data are blanked (whether via the Blanking mode of Pick & Change or by other means), the Pick Alter modifications will never be applied to the blanked cells/nodes, even if they meet the boundary conditions. This suggests a useful workflow: use Pick Blank to display only the elements you want to modify, and then use Pick Alter to do the modification.

- **Passive and Shared Variables**

 When using the Alter mode, passive variables are not modified. When shared variables exist, the changes will be made only to the active zone, and sharing for that zone and variable will be disabled.

Blanking Details

When you select the Blank mode, these changes happen in the background:

- A new cell-centered variable named PICK_BLANK is created. Allowable values are 0 or 1. If this variable already exists, it will be used (a second one will not be created).
- Constraint #8 will be defined to blank when PICK_BLANK = 1, which will blank any picked cells. Note that this may replace existing settings for this constraint.

There is also an Include Blanking toggle. You'll need to turn this on in order to see the results of your picks. However, this will also turn on any other blanking constraints that are defined and active. Choose **Plot > Blanking > Value Blanking** to deactivate or change those settings.

Macro Processing

You may record and play back macros for Pick & Change operation. Changes made using 2D geometries are totally dependent on the view. For these to work as expected, you must ensure you have the same view.
Working with Add-ons

of your data when you run the macro as you had when it was recorded. This dependency on the view also
means that Pick & Change operations cannot be journaled.

Macro commands are of two general types: those that define the pick boundary (PICKRECTANGLE,
PICKCIRCLE, PICKPOLYGON, PICKCUBE, PICKSPHERE) and those that define what changes to apply (ALTERAREA,
BLANKAREA, ALTERELEMENT, BLANKELEMENT). Except for ALTERELEMENT and BLANKELEMENT, there will always be a
pair of commands recorded for defining both parts.

Example:

```
$!ADDONCOMMAND
ADDONID = 'Pick and Change'
COMMAND = 'ALTERELEMENT VARIABLE="T(K)" MODIFIER="+1000" ZONE=2 ELEMENT=165'
$!ADDONCOMMAND
ADDONID = 'Pick and Change'
COMMAND = 'PICKRECTANGLE ANCHORX=0.0575227 ANCHORY=0.766247 SIZEX=0.635865 SIZEY=0.572908'
$!ADDONCOMMAND
ADDONID = 'Pick and Change'
COMMAND = 'ALTERAREA VARIABLE="T(K)" MODIFIER="+1000" RULE=ALLINSIDE'
```

Commands that define pick boundaries

The picking operation is view dependent, and the values may represent paper coordinates as opposed to
the grid values used for your data, so they may not be immediately recognizable.

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
<th>Type</th>
<th>Required?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICKRECTANGLE</td>
<td>ANCHORX</td>
<td>Floating point</td>
<td>Yes</td>
<td>Coordinates of the anchor corner of the rectangle</td>
</tr>
<tr>
<td></td>
<td>ANCHORY</td>
<td>Floating point</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIZEX</td>
<td>Floating point</td>
<td></td>
<td>X and Y dimensions of the rectangle</td>
</tr>
<tr>
<td></td>
<td>SIZEY</td>
<td>Floating point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICKCIRCLE</td>
<td>ANCHORX</td>
<td>Floating point</td>
<td></td>
<td>Center of the circle</td>
</tr>
<tr>
<td></td>
<td>ANCHORY</td>
<td>Floating point</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RADIUS</td>
<td>Floating point</td>
<td></td>
<td>Radius</td>
</tr>
<tr>
<td>PICKPOLYGON</td>
<td>CORNERS</td>
<td>Comma-separated list of X,Y pairs of coordinates defining the corner points</td>
<td>Yes</td>
<td>A minimum of three corners must be specified</td>
</tr>
<tr>
<td>PICKCUBE</td>
<td>ANCHORX</td>
<td>Floating point</td>
<td></td>
<td>Coordinates of the anchor corner of the cube</td>
</tr>
<tr>
<td></td>
<td>ANCHORX</td>
<td>Floating point</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Add-ons

Commands that define pick changes

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
<th>Type</th>
<th>Required?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLANKAREA</td>
<td></td>
<td></td>
<td></td>
<td>Apply blanking using the currently defined pick boundary.</td>
</tr>
<tr>
<td>RULE</td>
<td>One of ALLINSIDE, ALLOUTSIDE, ANYINSIDE, ANYOUTSIDE</td>
<td>String</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ALTERAREA</td>
<td></td>
<td></td>
<td></td>
<td>Apply data alterations using the currently defined pick boundary.</td>
</tr>
<tr>
<td>RULE</td>
<td>One of ALLINSIDE, ALLOUTSIDE, ANYINSIDE, ANYOUTSIDE</td>
<td>String</td>
<td>Yes</td>
<td>X and Y dimensions of the rectangle</td>
</tr>
<tr>
<td>VARIABLE</td>
<td>String</td>
<td>Yes</td>
<td></td>
<td>Name of variable to be modified</td>
</tr>
<tr>
<td>MODIFIER</td>
<td>String</td>
<td>Yes</td>
<td></td>
<td>Modifier (i.e. "$50", "$10", etc.)</td>
</tr>
<tr>
<td>BLANKELEMENT</td>
<td></td>
<td></td>
<td></td>
<td>Blank a single cell</td>
</tr>
<tr>
<td>ZONE</td>
<td>Integer</td>
<td>Yes</td>
<td></td>
<td>Zone number containing cell to be blanked</td>
</tr>
<tr>
<td>ELEMENT</td>
<td>Integer</td>
<td>Yes</td>
<td></td>
<td>Cell number to blank</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
<th>Type</th>
<th>Required?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCHORZ</td>
<td>Floating point</td>
<td>Yes</td>
<td></td>
<td>Dimensions of the cube sides in the X, Y, and Z directions.</td>
</tr>
<tr>
<td>SIZEX</td>
<td>Floating point</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIZEY</td>
<td>Floating point</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIZEZ</td>
<td>Floating point</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROTATEX</td>
<td>Floating point</td>
<td>No</td>
<td>Default = 0</td>
<td>Angles (in degrees) of rotation about the X, Y, and Z axes.</td>
</tr>
<tr>
<td>ROTATEY</td>
<td>Floating point</td>
<td>No</td>
<td>Default = 0</td>
<td></td>
</tr>
<tr>
<td>ROTATEZ</td>
<td>Floating point</td>
<td>No</td>
<td>Default = 0</td>
<td></td>
</tr>
</tbody>
</table>

PICKSPHERE

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
<th>Type</th>
<th>Required?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCHORX</td>
<td>Floating point</td>
<td>Yes</td>
<td></td>
<td>Coordinates of the center of the sphere</td>
</tr>
<tr>
<td>ANCHORY</td>
<td>Floating point</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANCHORZ</td>
<td>Floating point</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RADIUS</td>
<td>Floating point</td>
<td>Yes</td>
<td></td>
<td>Sphere radius</td>
</tr>
</tbody>
</table>

494
Working with Add-ons

Other Commands (no parameters)

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameters</th>
<th>Type</th>
<th>Required?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERELEMENT</td>
<td></td>
<td></td>
<td></td>
<td>Alter a single cell or node</td>
</tr>
<tr>
<td>ZONE</td>
<td>Integer</td>
<td>Yes</td>
<td></td>
<td>Zone number containing element to be altered</td>
</tr>
<tr>
<td>ELEMENT</td>
<td>Integer</td>
<td>Yes</td>
<td></td>
<td>Cell or node number</td>
</tr>
<tr>
<td>VARIABLE</td>
<td>String</td>
<td>Yes</td>
<td></td>
<td>Name of variable to be modified</td>
</tr>
<tr>
<td>MODIFIER</td>
<td>String</td>
<td>Yes</td>
<td></td>
<td>Modifier (i.e. "+50", "+10", etc.)</td>
</tr>
</tbody>
</table>

31 - 3.12 Solution Time and Strand Editor

The Solution Time and Strand Editor add-on allows you to modify the strand and solution time values from the user interface. This helps when loading a series of data files that do not have a solution time or strand ID. Adding the solution time simplifies both animating and setting component styles.

This data loads automatically with Tecplot 360 EX. To unload the add-on, comment out the following line from your Tecplot.add File.

```bash
$!LoadAddOn "tecutiltools_strandeditor"
```
Add-ons

To access this add-on, select “Edit Time Strands” from the Data menu. The Strand Editor dialog has the following options:

- **Zones to Edit** - In the Zones to Edit box, select a set of zones to edit.
- **Data Specifications** - Toggle-on “Multiple Zones Per Time Step” in order to select grouping by time step or strand. Use this Data Specifications region of the dialog to specify how the add-on groups zones.
- **Strand ID** - In the Time Strand region of the dialog, toggle-on “Assign Strands” to assign strand IDs.
- **Solution Time** - In the Solution Time region of the dialog, toggle-on “Assign Solution Time” to assign the solution time using one of the following options:
 - **Single Value** - The Single Value option assigns the specified solution time to all selected zones.
 - **Constant Delta** - The Constant Delta option applies a constant delta between zones (or groups of zones, depending on the Data Specification settings).
 - **Automatic** - The Automatic option attempts to determine the solution time for each zone in this order:
 - Examines the Common.Time auxiliary data attached to the zone.
 - Tries to read a number from the zone name.
 - Tries to find a dataset variable that contains the time value. If found, uses the minimum value of this variable for that zone.
 - If an existing solution time is defined for the zone, the Automatic option uses it.
 - If all previous efforts fail, the Automatic option will fall back to use the Constant Delta option.

31 - 3.13 Tensor Eigensystem

The Tensor Eigensystem add-on loads automatically with Tecplot 360 EX. This add-on enables you to calculate the eigenvalues and eigenvectors of a 3-by-3 symmetric tensor whose components are stored in
your data set. The add-on calculates for each node in the data set and stores the results as new data set variables.

To use this add-on, select “Tensor Eigensystem” from the Tools menu to open the Tensor Tools dialog. To unload the add-on, comment out the line including the libname “tecurltools_tensoregn” in your Tecplot.add File.

In the Tensor Tools dialog, select variables from your data set to represent the 6 components of the tensor. Toggle-on “Sort by Eigenvalue” to sort the results by the eigenvalues, and/or toggle-on “Save Eigenvectors” to store the calculated eigenvectors in addition to the calculated eigenvalues, which the calculation always saves. Then select [OK] to perform the calculation.

Tecplot 360 EX will store the eigenvalues of the tensor as variables EgnVal1, EgnVal2, and EgnVal3 in your data set. If you choose to save the eigenvectors as well, they are stored as variables EgnVec11 through EgnVec33. If you toggled-on “Sort by Eigenvalue”, the eigenvalues and their corresponding eigenvectors will be sorted smallest-to-largest at each grid node.

A common use of Tensor Eigensystem is to visualize vortex cores in a flow solution. You can do this by the following method:

1. Calculate Velocity Gradient in Analyze>Calculate Variables
2. Calculate the symmetric tensor S2 + Ohm-2 with Data>Alter>Specify Equations (see below for an equation file to perform this)
3. Use the Tensor Eigensystem dialog to calculate the sorted eigenvalues
4. Display an iso-surface of Lambda-2, the middle of the three eigenvalues, which is negative in the vicinity of a vortex core
Add-ons

The following equation file calculates the required symmetric tensor components of $S_2 + \Omega m^{-2}$ from the velocity gradient for step 2 above. Save the below to a text file, then load it into the Specify Equations dialog by selecting “Load Equations” and selecting the file.

```plaintext
#MPL TUNE
$!ALTERDATA EQUATION = '{s11} = {dUdX}'
$!ALTERDATA EQUATION = '{s12} = 0.5*({dUdY}+{dVdX})'
$!ALTERDATA EQUATION = '{s13} = 0.5*({dUdZ}+{dWdX})'
$!ALTERDATA EQUATION = '{s22} = {dVdY}'
$!ALTERDATA EQUATION = '{s23} = 0.5*({dVdZ}+{dWdY})'
$!ALTERDATA EQUATION = '{s33} = (dWdZ)'  
$!ALTERDATA EQUATION = '{Omga12} = 0.5*({dUdY}-{dVdX})'
$!ALTERDATA EQUATION = '{Omga13} = 0.5*({dUdZ}-{dWdX})'
$!ALTERDATA EQUATION = '{Omga23} = 0.5*({dVdZ}-{dWdY})'
$!ALTERDATA EQUATION = '{s2o2_11} = {s11}**2 + {s12}**2 + {s13}**2 - {Omga12}**2 - {Omga13}**2 '
$!ALTERDATA EQUATION = '{s2o2_12} = {s11}*{s12} + {s12}*{s22} + {s13}*{s23} - {Omga13}*{Omga23} '
$!ALTERDATA EQUATION = '{s2o2_13} = {s11}*{s13} + {s12}*{s23} + {s13}*{s33} - {Omga12}*{Omga23} '
$!ALTERDATA EQUATION = '{s2o2_22} = {s12}**2 + {s22}**2 + {s23}**2 - {Omga12}**2 - {Omga23}**2 '
$!ALTERDATA EQUATION = '{s2o2_23} = {s12}*{s13} + {s22}*{s23} + {s23}*{s33} - {Omga12}*{Omga23} '
$!ALTERDATA EQUATION = '{s2o2_33} = {s13}**2 + {s23}**2 + {s33}**2 - {Omga13}**2 - {Omga23}**2 '
```

Remember that the Tensor Eigensystem add-on can only analyze 3-by-3 symmetric tensors (not 2-by-2, anti-symmetric, or non-symmetric tensors).

Macro Processing

To invoke the tensor eigensystem add-on with a macro, use the following syntax.

```plaintext
$!EXTENDEDCOMMAND
COMMANDPROCESSORID = 'Tensor Eigensystem'
COMMAND = 'T11VarNum = <integer>
T12VarNum = <integer>
T13VarNum = <integer>
T22VarNum = <integer>
T23VarNum = <integer>
T33VarNum = <integer>
SortEgnV = <Boolean>
SaveEgnVect = <Boolean>'
```

31 - 3.14 Time Series

The Time Series add-on, *libname* “tecutitools_timeseries,” loads automatically with Tecplot 360 EX. It extracts a single point over time and plots the result in a new frame as an XY Line Plot. The solution time of the time series plot’s frame is linked to that of its parent, and a marker gridline is added to show the current solution time. If a nearest-point probe is performed (using Control-click), you may follow a particular node through time, or through an XY(Z) location.

When tracking a node through time, each zone must have the same node map (or a shared node map). This add-on may not work as expected when there are multiple zones in the same strand at the same solution time.

To use the Time Series add-on, choose one of the following menu options from the Tools menu:

- **Probe To Create Time Series Plot** - This option sets the mouse mode to probe. You can use either the mouse or the Probe At dialog to probe a point. The probed location will be sampled over time (for transient data) and a resulting XY Line Plot will be created. If a nearest point
Working with Add-ons

probe is done (Control-click), a dialog appears to ask if you want to track the node or the XY(Z) location through time. If you track the node, it is important that your data has the same node map for each zone through time.

• Send Time Series Data To New Frame - This option creates a new frame for each point extracted. By default, the frame used for the time series data is reused to avoid creating an excess of frames.

See also: Section 31 - 3.6 “Extract Over Time”, Section 31 - 3.5 “Extend Time Macro”, Section 31 - 3.12 “Solution Time and Strand Editor”, Section 31 - 3.4 “Extend Macro”, Section 7 - 2 “Time Aware”.

31 - 3.15 Write Data as Formatted Text

The Write Data as Formatted Text add-on, which loads automatically with Tecplot 360 EX, enables you to write data from an XY Line Plot to a text file in *.csv format (for comma separated data) or in *.txt format (for any other data separators). To use it, select “Write Data As Formatted Text” from the Tools menu. This will open the Write Data as Text File dialog.

The Write Data as Text File dialog includes the following options:

• Choose Frames - Use the Choose Frames region of the dialog to specify which frames to include in the text file. Choose from the following options:
 • Active Frame - Select to include the active frame only.
 • Selected Frames - When “Selected Frames” is active, the box to the right will become sensitive. Use the Shift and Control keys to select multiple items in the list.
 • All Frames - Select “All Frames” to include data from all frames in the text file.

• Choose Zones - Toggle-off the “All” option to select a subset of zones to include in the text file. Because different frames may have different zones, this option is available only when “Active Frame” is selected in the Choose Frames region of the dialog.

• Choose Variables - Toggle-off the “All” option to select a subset of variables to include in the text file. Because different frames may have different variables, this option is available only when “Current Frame” is selected in the Choose Frames region of the dialog.

• Value Separator - Use the Value Separator options to specify the delimiter to use in the text file.

• Change Variable Format - Click to launch the Change Format dialog. If you choose not to change the variable format, values will be written in the “best” format, except variables named “Time” or “Date.”

• Other Text - Toggle-on any of the options in the Other Text region of the dialog to include the desired values in the text file.
Add-ons

Change Format

Use the Change Format dialog (accessible using the Change Variable Format button in the Write Data as Text File dialog) to change the format for one or more variables. To change the format for all variables simultaneously, toggle-on “Select All Variables”.

Choose a new format with the Select Format section of the dialog. Available formats are Best Float, Integer, Float, and Exponent. “Best Float” automatically selects either regular floating point or scientific notation depending on the value and uses as many digits as are necessary to represent the value. “Float” and “Exponent” use standard and scientific notation, respectively.

When you have chosen “Float” or “Exponent,” you may use the Width.Precision box to specify the width and precision of your new variable format using a C-style numeric formatting specifier (see examples following). Width refers to the total number of characters (including the decimal point; numbers are space-padded on the left if necessary), while Precision refers to the number of places beyond the decimal point. Precision is a hard limit, while Width is a soft limit: the specified number of digits of precision are always used, but numbers are not cut off if they do not fit in the specified width (see second example following). Leading zeroes are not displayed, except for one immediately preceding a decimal point (that is, for values between -1 and 1).

For example, a Width.Precision of 10.2 yields:

```plaintext
Month,Seattle Rainfall,Dallas Rainfall,Miami Rainfall,Error 1,
1.00, 4.30, 4.00, 4.00, 0.20,
2.00, 4.50, 4.00, 4.10, 0.22,
3.00, 4.00, 3.50, 4.50, 0.24,
4.00, 4.20, 3.40, 4.20, 0.24,
```

While a Width.Precision of 3.2 yields:

```plaintext
Month,Seattle Rainfall,Dallas Rainfall,Miami Rainfall,Error 1,
1.00, 4.30, 4.00, 4.00, 0.20,
2.00, 4.50, 4.00, 4.10, 0.22,
3.00, 4.00, 3.50, 4.50, 0.24,
4.00, 4.20, 3.40, 4.20, 0.24,
```
Part 8 Appendices
A - 1 Tecplot 360 EX Command Line

The general form of the Tecplot 360 EX command line is:

```
tec360 [options] [layoutfile] [datafiles] [macrofile]
```

Most Tecplot 360 EX command line options are available for Windows operating systems, not just Linux and Mac OS X. To use them, start Tecplot 360 EX from the Run command or at the command prompt (cmd.exe).

Under Windows, invoking Tecplot 360 EX from the command line or in a .bat file returns immediately rather than waiting for the application to terminate. If you are using Tecplot 360 EX to convert files or run a macro, you probably want to wait until Tecplot 360 EX has finished one operation before proceeding with the next. Otherwise, the next step may be working with partially-written data. To do this, invoke it with `start /wait tec360` followed by the desired options.

Where:

- `[layoutfile]` - File with extension *.lay or *.lpk. See also Section 23 - 1 “Layout Files, Layout Package Files, Stylesheets”.

- `[datafiles]` - One or more data files. If both a layout file (*.lay only) and data files appear on the command line, Tecplot 360 EX substitutes the data files referenced in the layout file with the data files listed in the command line.

- `[macrofile]` - Macro file name. See also Chapter 26: “Macros”.

...
Command Line Options

```
[options] - one or more of the following:
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>layoutfile</td>
<td>List the layout file you would like to load (*.lay, *.lpk).</td>
</tr>
<tr>
<td>datafile</td>
<td>List the data file(s) you would like to load. If both a layout file (*.lay only) and data files are listed, the data files referenced in the layout file will be substituted with the data files in the command line.</td>
</tr>
<tr>
<td>macrofile</td>
<td>List the macro file you would like to load (*.mcr).</td>
</tr>
<tr>
<td>-addonfile filename</td>
<td>Supply a custom list of addons via the tecplot.add file.</td>
</tr>
<tr>
<td>-b</td>
<td>Run in batch mode.</td>
</tr>
<tr>
<td>-cfgfile</td>
<td>Use cfgfile for the configuration instead of the default configuration file, tecplot.cfg.</td>
</tr>
<tr>
<td>-convert</td>
<td>Loads all the specified data files, and runs specified macros in a restricted batch mode in which the only permitted options are reading data files (in any supported format) and writing SZL files. Does not use a license key. See also -o.</td>
</tr>
<tr>
<td>-display computername</td>
<td>Display on computer computername (Linux only). The target system must have X-server capability with the GLX extension.</td>
</tr>
<tr>
<td>datafile filename</td>
<td>Load data file filename.</td>
</tr>
<tr>
<td>-debug dbugfile</td>
<td>Send debug information to the file dbugfile. Information is displayed to aid in debugging a new configuration file, macro file, or binary data file. You may specify the minus sign ("-" for dbugfile to send the debug output to the “standard output” (Mac/Linux only).</td>
</tr>
<tr>
<td>-f fontfile</td>
<td>Use fontfile instead of the default font file, tecplot.fnt.</td>
</tr>
<tr>
<td>-h homedir</td>
<td>Use homedir for the home directory instead of the default home directory.</td>
</tr>
<tr>
<td>-help</td>
<td>Open help message for command-line flags.</td>
</tr>
<tr>
<td>-loadaddon "addonname"</td>
<td>Load an add-on named addonname.</td>
</tr>
<tr>
<td>-m colormapfile</td>
<td>Use colormapfile as the initial color map file.</td>
</tr>
<tr>
<td>-mesa</td>
<td>Use Mesa software 3D renderer instead of hardware rendering (Linux/Mac only)</td>
</tr>
<tr>
<td>-nobanner</td>
<td>Do not show the opening banner (i.e. splash screen).</td>
</tr>
<tr>
<td>-nobatchlog</td>
<td>Suppress creation of the file batch.log during batch mode operation.</td>
</tr>
<tr>
<td>-nostdaddons</td>
<td>Do not load the add-ons listed in the tecplot.add file.</td>
</tr>
<tr>
<td>-nowelcomescreen</td>
<td>Do not display the Welcome Screen at startup (it may still be opened after launch from the View menu)</td>
</tr>
<tr>
<td>-o outputfile.szplt</td>
<td>Writes the specified SZL file from the data loaded from other files (including macros) specified on the command line, then exit. Does not require a license key. See also -convert.</td>
</tr>
<tr>
<td>-p scriptfile</td>
<td>Play the macro commands in the file scriptfile.mcr.</td>
</tr>
<tr>
<td>-q</td>
<td>Use quick playback mode. Ignores delay and pause commands.</td>
</tr>
<tr>
<td>-qm quickpanelfile</td>
<td>Place the macro functions in quickpanelfile in the Quick Macro Panel, instead of using the macros from the default file, tecplot.mcr.</td>
</tr>
<tr>
<td>-quiet</td>
<td>Turns off all standard-out messages (Linux only).</td>
</tr>
</tbody>
</table>
A - 2 Using Command Line Options in Windows Shortcuts

All of the command line options that can be entered at the DOS or Command prompt by using the Run command can also be used in a Windows shortcut.

If you frequently run Tecplot 360 EX using the same command line flags, it may be useful to create a shortcut on your Windows desktop that launches Tecplot 360 EX with the desired command line flags. Here's how this can be done:

This process may vary slightly in different supported versions of Windows. The Windows 7 dialogs are shown here.

1. Right click any blank space on your Windows desktop.

<table>
<thead>
<tr>
<th>Command Line Input</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>tec360</td>
<td>Run Tecplot 360 EX without pre-loading any data files</td>
</tr>
<tr>
<td>tec360 ex1.plt</td>
<td>Run Tecplot 360 EX loading the data file ex1.plt as the first dataset</td>
</tr>
<tr>
<td>tec360 ex1.plt ex2.plt ex3.plt</td>
<td>Run Tecplot 360 EX loading the data files ex1.plt, ex2.plt, and ex3.plt as the first dataset</td>
</tr>
<tr>
<td>tec360 -h /usr/myhome -c /usr/myhome/myset.cfg</td>
<td>Run Tecplot 360 EX using /usr/myhome as the Tecplot 360 EX home directory and loading the Tecplot 360 EX configuration file /usr/myhome/myset.cfg</td>
</tr>
<tr>
<td>tec360 sumtr1.lay</td>
<td>Run Tecplot 360 EX using layout file sumtr1.lay</td>
</tr>
<tr>
<td>tec360 calc.lay temp.plt</td>
<td>Read a Tecplot 360 EX layout file calc.lay and replace the first dataset referenced in the layout file with the data file temp.plt</td>
</tr>
<tr>
<td>tec360 -p a.mcr</td>
<td>Run Tecplot 360 EX and play a macro called a.mcr</td>
</tr>
<tr>
<td>tec360 infile.dat -o outfile.szplt</td>
<td>Reads infile.dat, writes outfile.szplt in batch mode. Does not require a license.</td>
</tr>
<tr>
<td>tec360 -convert conversion.mcr</td>
<td>In batch mode, run the macro file conversion.mcr which may contain instructions only to read files and write them in .szl format. Does not require a license.</td>
</tr>
</tbody>
</table>

Table A - 4: Tecplot 360 EX Command Line Examples
2. Select **New>Shortcut** from the resulting menu.

3. In the **Create Shortcut** dialog, type the location of the Tecplot 360 EX executable, along with any command flags you want to specify. An example command line is:

```
"C:\Program Files\Tecplot\Tecplot 360 EX 2018 R2\bin\tec360.exe" -p C:\\mymacro.mcr
```

You may also click the **Browse** button to choose the executable using an Open dialog, instead of typing the path.

4. Click **[Next]**.

5. Select a name for your shortcut, then click **[Finish]**.

6. A new shortcut icon will be placed on your Windows desktop.

A - 2.1 Changing Shortcuts

You can alter an existing shortcut by doing the following:

1. Right-click on the shortcut icon you want to change and select **Properties**.
2. On the Shortcut page, modify the command line by changing the setting for Target. To change the working directory that Tecplot 360 EX runs under, change the Start in location.

A - 3 Exit Codes

Upon completing execution, Tecplot 360 EX returns an exit code, which can be used in scripts to determine whether a problem occurred. This exit code is 0 (success) if execution completed without error, or 1 (error) if execution was terminated by an error.
Command Line Options
Tecplot 360 EX Utilities

The following utilities are included with the Tecplot 360 EX distribution:

- **Excel Add-In** - Allows you to load Excel spreadsheet data directly into Tecplot 360 EX from inside Microsoft Excel.
- **LPK View** - A utility to catalog, preview or unpack a layout package file into its component data and layout files.
- **Preplot** - A utility to convert an ASCII data file into a Tecplot binary file.
- **Pltview** - A utility to view the header information for a Tecplot binary file.

B - 1 Excel Add-In

The Excel Add-In provides a convenient way to load data directly from your Microsoft Excel spreadsheet into Tecplot 360 EX. When loaded, it adds a Tecplot section to the Add-Ins ribbon, which contains a button that lets you open the highlighted region of the spreadsheet in Tecplot 360 EX. (In older versions of Excel, previous to the ribbon user interface, this command appears on the Tools menu and as a button in the toolbar.)

The Excel Add-In is available on Windows platforms only and requires Microsoft Excel be installed. Visual Basic for Applications, a component of Microsoft Office, must also be installed; if you receive an error about the workbook having lost its VBA project, make sure that Visual Basic for Applications is installed by using the Programs and Features dialog (Add/Remove Programs in older versions of Windows) to modify your Microsoft Office installation. Visual Basic for Applications can be found under the Office Shared Features heading in the Office installer.

The Excel add-in features:

- **Highlight and Plot** - It's easy to plot just a portion of your data. Click in the upper left cell of the region or highlight the entire region, and then click on the Tecplot button in the Add-Ins ribbon or toolbar or on the Tecplot option in Excel's Tools menu.
- **Multiple Zones** - The Excel Add-In makes loading multiple zones much easier. Highlight the entire region and then click on the Tecplot button in the Add-Ins ribbon or toolbar or on the
Tecplot 360 EX Utilities

Tecplot option in Excel’s Tools menu. If your zones are separated by blank rows or columns, the add-in will automatically detect them and load them into Tecplot 360 EX.

- **Formulas** - The highlighted region of the spreadsheet can contain formulas, or can be created entirely with formulas.

The first time you use the Excel Add-In, you will be prompted to choose the Tecplot 360 EX executable to be launched from Excel. This will be the tec360.exe file in the bin folder of your Tecplot 360 EX installation. Your choice will be remembered and you will not be asked again unless the Excel Add-In cannot find the previously-chosen executable. A button in the Tecplot section of the Excel ribbon (or the Tools menu), Find Tecplot, will allow you to choose a different Tecplot 360 EX executable if you have upgraded or wish to use the Excel Add-In with more than one installed version of Tecplot 360 EX.

A Read Me file, located in the Util/Excel directory, further describes installation and use of this add-in.

As an example, let’s say you have 3D data obtained by drilling a number of wells and measuring contaminant concentrations of various chemicals at different depths. Your data is in an Excel spreadsheet, and you want to load the data into Tecplot 360 EX to get a visual representation of the contamination. The data has nine variables and twenty-seven zones. A small part is shown in Figure B-5.

Figure B-5. The beginning well data displayed in Excel.

Make sure you have a blank row separating the zones in your Excel spreadsheet.

Perform the following steps to import your data and visualize the contaminant plumes:

1. Starting with the top left-hand cell, highlight all twenty-seven zones and nine variables.
2. Click on Tecplot in Excel’s Add-Ins ribbon. The menu option launches Tecplot 360 EX with the selected data loaded.
3. Switch to 3D Cartesian plot mode to see the location and measurement depths of the well samples. The resulting plot is shown in Figure B-6.

Figure B-6. The Excel well data plotted in Tecplot 360 EX.

Your wells have different depths, so the number of measurements are not the same for each well (there are only three measurements at well five).

B - 2 LPK View

As a convenience a command line utility, lpkview is provided to catalog and unpack layout packages. In its simplest form (when no options were included), the utility to unpack the preview image (if present), the layout, and all associated data files into the directory in which the utility was run.

For example:

lpkview myplot.lpk

might unpack the following files in the current directory:

myplot.png
myplot.lay
myplot_1.plt
myplot_2.plt
myplot_3.plt

Tecplot 360 EX determines the names for unpacked files when the package is created. Tecplot 360 EX eliminates name conflicts within the package by appending unique numbers to non-unique names. However, no attempt is made by lpkview to ensure that names are unique with other files located in the directory where the items are unpacked.

The utility's syntax is as follows:

lpkview [[-t] | [-il] | [[[-< <preview command>] -p]] filename

Brackets ([]) surround optional parameters and the vertical bar (|) separates one mutually exclusive set of options from another. The options are described as follows:

-t Show table of contents.
-il Extract image (for example, a Portable Network Graphics or .png format).
-l Extract layout.
Preplot

The Preplot executable included in the standard Tecplot 360 EX installation converts Tecplot format ASCII data files to binary data files. The following options are available:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>Turn on debug echo. Use -d2, -d3, -d4 for more detailed debug information.</td>
</tr>
<tr>
<td>-foreignplt</td>
<td>Reverse the bytes of the output binary data file (generally not required).</td>
</tr>
<tr>
<td>-iset zone, start, end, skip</td>
<td>Create the binary data file using only the specified range and skipping for the I-index. The zone parameter specifies which zone this option affects; if not specified, all zones are affected. The start parameter is the starting I-index; the default is one. The end parameter is the ending I-index; the default is the last index value. The skip parameter specifies the I-interval, that is, the distance between indices; one means every index is used, two means every other index, and so on. For example, -iset 1, 3, 7, 2 indicates that for zone 1 only I-index values of 3, 5, and 7 are used. Only one -iset option is allowed per zone.</td>
</tr>
<tr>
<td>-jset zone, start, end, skip</td>
<td>Same as -iset above, except with respect to the J-index.</td>
</tr>
<tr>
<td>-kset zone, start, end, skip</td>
<td>Same as -iset above, except with respect to the K-index.</td>
</tr>
<tr>
<td>-zonelist start[:end[:skip]], ...</td>
<td>Specify the zones to process. You may supply more than one specification. By default Preplot processes all zones.</td>
</tr>
</tbody>
</table>

Pltview

Pltview is a command line utility to examine the header information for binary Tecplot data files. It is included in your Tecplot 360 EX distribution and installed in the bin directory. To run pltview:

1. Launch the Command Prompt
2. navigate to the bin directory of your Tecplot 360 EX installation.
3. in the command prompt, type:
   ```plaintext```
   pltview "fullpath/Filename.plt"
   ```plaintext```
 You must enter the full path for your file.
4. The command prompt will display:
 - File Name
 - File Version
• File Type
• Data Set Title
• Number of Zones
• Number of Variables
• Variable Names
• Auxiliary Data
• I, J and K Max for each ordered zone
• Total number of Nodes, Elements, Faces, as well as the element type, for each finite element zone

An example session using the pltview utility is shown here.

```
C:\temp>pltview chem.plt
FileName : chem.plt
FileVersion: 7.0
DataSetTitle: Time versus Concentration
NumZones : 2
numbers : 4
Var Names : Time, Concentration, U3, 54.95, 96

<table>
<thead>
<tr>
<th>CaseName</th>
<th>IMax</th>
<th>JMax</th>
<th>KMax</th>
<th>Node</th>
<th>Elmt</th>
<th>Eltype</th>
</tr>
</thead>
<tbody>
<tr>
<td>gce-1.21</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gce-1.33</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C:\temp>
```
Shortcuts

C - 1 Keyboard Shortcuts

On some platforms, Num Lock may interfere with some keyboard shortcuts. If shortcuts don’t work, try toggling Num Lock.

C - 1.1 3D Rotate Tools

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt-Click-and-drag</td>
<td>Rotate about the viewer position using the active Rotate tool.</td>
</tr>
<tr>
<td>Middle-click-and-drag</td>
<td>Smoothly zoom in and out of the data.</td>
</tr>
<tr>
<td>Right-click-and-drag</td>
<td>Translate the data.</td>
</tr>
<tr>
<td>Control-right-click-and-drag</td>
<td>Rotate about the rotation origin (any tool may be active).</td>
</tr>
<tr>
<td>(Mac OS X: Command-right-</td>
<td></td>
</tr>
<tr>
<td>click-and-drag)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Move the rotation origin to the probed point, ignoring zones.</td>
</tr>
<tr>
<td>O</td>
<td>Set the center of rotation.</td>
</tr>
<tr>
<td>R</td>
<td>Switch to Rollerball rotation.</td>
</tr>
<tr>
<td>S</td>
<td>Switch to Spherical rotation.</td>
</tr>
<tr>
<td>T</td>
<td>Switch to Twist rotation.</td>
</tr>
<tr>
<td>X</td>
<td>Switch to X-axis rotation.</td>
</tr>
<tr>
<td>Y</td>
<td>Switch to Y-axis rotation.</td>
</tr>
<tr>
<td>Z</td>
<td>Switch to Z-axis rotation.</td>
</tr>
</tbody>
</table>
Shortcuts

C - 1.2 Contour Add Tool

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt-click</td>
<td>Place a contour line by probing on a streamtrace, slice, or iso-surface.</td>
</tr>
<tr>
<td>Click</td>
<td>Place a contour line.</td>
</tr>
<tr>
<td>Control-click</td>
<td>Replace the nearest contour line with a new line.</td>
</tr>
<tr>
<td>Click-and-drag</td>
<td>Move the new contour line.</td>
</tr>
<tr>
<td>-</td>
<td>Switch to the Contour Remove tool.</td>
</tr>
</tbody>
</table>

C - 1.3 Contour Remove Tool

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click</td>
<td>Remove the contour line nearest to the probed location.</td>
</tr>
<tr>
<td>+</td>
<td>Switch to the Contour Add tool.</td>
</tr>
</tbody>
</table>

C - 1.4 Geometry Polyline Tool

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Allow translation of polyline segments in all directions.</td>
</tr>
<tr>
<td>H</td>
<td>Restrict translation of the current polyline segment to horizontal.</td>
</tr>
<tr>
<td>U</td>
<td>End the current polyline at last clicked point and start a new one.</td>
</tr>
<tr>
<td>V</td>
<td>Restrict translation of current polyline segment to vertical.</td>
</tr>
</tbody>
</table>

C - 1.5 Probe Tool

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click</td>
<td>If the pointer is over a single valid cell, the interpolated field values from all nodes in the cell are returned. If multiple cells are candidates, the action is dependent upon the plot type: For 2D, the cell from the highest number zone is used. For 3D, the cell closest to the viewer is used.</td>
</tr>
<tr>
<td>Control-click</td>
<td>If the pointer is over a single valid cell, the field values from the nearest node in the cell are returned. If multiple cells are candidates, the action is dependent upon the plot type: For 2D, the cell from the highest number zone is used. For 3D, the cell closest to the viewer is used. If the pointer is not over any cell, then the field values from nearest data point (as measured in distance on the screen) are returned.</td>
</tr>
<tr>
<td>Shift-Control-click</td>
<td>The field values from the nearest point on the screen are returned (ignoring surfaces, zone number, and depth of the point). This is useful in 3D for probing on data points that are on the back side of a closed surface without having to rotate the object. In 2D, this is useful for probing on data points for zones that may be underneath other zones.</td>
</tr>
</tbody>
</table>
Keyboard Shortcuts

<table>
<thead>
<tr>
<th>Alt-click</th>
<th>Alt-Control-click</th>
<th>Alt-Control-Shift-click</th>
<th>X, Y</th>
<th>T, R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe only on streamtraces, iso-surfaces, or slices. If multiple cells are candidates, the action is dependent upon the plot type: For 2D, the cell from the highest number zone is used. For 3D, the cell closest to the viewer is used.</td>
<td>Probe only on streamtraces, iso-surfaces, or slices. If multiple cells are candidates, the action is dependent upon the plot type: For 2D, the cell from the highest number zone is used. For 3D, the cell closest to the viewer is used.</td>
<td>Probe only on streamtraces, iso-surfaces, or slices. The field values from the nearest point on the screen are returned.</td>
<td>When probing, press X or Y in XY Line to switch dependencies, or R or T in Polar Line.</td>
<td></td>
</tr>
</tbody>
</table>

C - 1.6 Slice Tool

<table>
<thead>
<tr>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn on start/end slices, or increment the number of intermediate slices.</td>
<td>Turn off start/end slices, or decrement the number of intermediate slices.</td>
</tr>
</tbody>
</table>

Click

If no slices are displayed for the current slice group, place the primary slice. Otherwise, move the closest displayed start, end, and primary slice from its current position to the clicked position.

<table>
<thead>
<tr>
<th>Alt-click</th>
<th>Click</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place the start, end, or primary slice (whichever is closer to the click position) on the nearest derived object (streamtrace, slice or iso-surface).</td>
<td>Place the start, end, or primary slice (whichever is closer to the click position) on the nearest derived object (streamtrace, slice or iso-surface).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control-click</th>
<th>I, J, K</th>
<th>X, Y, Z</th>
<th>A</th>
<th>1-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place the start, end, or primary slice (whichever is closer to the click position) on the nearest derived object (streamtrace, slice or iso-surface).</td>
<td>Switch to slicing constant I, J, or K-planes, respectively. Available for ordered zones only.</td>
<td>Switch to slicing constant X-, Y-, or Z-planes, respectively.</td>
<td>Switch to arbitrary slice mode.</td>
<td>Switch between slice groups.</td>
</tr>
</tbody>
</table>

C - 1.7 Streamtrace Placement tools (3D Cartesian plots only)

<table>
<thead>
<tr>
<th>D</th>
<th>R</th>
<th>S</th>
<th>V</th>
<th>1-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change the streamtrace style to streamrods.</td>
<td>Change the streamtrace style to streamribbons.</td>
<td>Change the streamtrace style to surface lines.</td>
<td>Change the streamtrace style to volume lines.</td>
<td>Change the number of streamtraces to be added when placing a rake of streamtraces.</td>
</tr>
</tbody>
</table>
Shortcuts

C - 1.8 Translate Tool

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Reduce the magnification of the data.</td>
</tr>
<tr>
<td>+</td>
<td>Increase the magnification of the data.</td>
</tr>
<tr>
<td>Drag</td>
<td>Translate the data.</td>
</tr>
<tr>
<td>Shift-drag</td>
<td>Translate the paper.</td>
</tr>
<tr>
<td>Shift -</td>
<td>Reduce the magnification of the paper.</td>
</tr>
<tr>
<td>Shift +</td>
<td>Increase the magnification of the paper.</td>
</tr>
</tbody>
</table>

C - 1.9 Zoom Tool

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click</td>
<td>Center the zoom around the location of your click.</td>
</tr>
<tr>
<td>Control-click</td>
<td>Center the zoom around the location of your click and zoom out.</td>
</tr>
<tr>
<td>Drag</td>
<td>Draw a box to set the frame view.</td>
</tr>
</tbody>
</table>

C - 1.10 Selector Tool

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click</td>
<td>Select the frontmost object at the clicked location.</td>
</tr>
<tr>
<td>Control-click</td>
<td>Select the next object behind the currently selected object ("dig").</td>
</tr>
<tr>
<td>Shift-click</td>
<td>Multiple selection. Click the first object, then shift-click subsequent objects to add them to the selection.</td>
</tr>
<tr>
<td>Alt-click</td>
<td>Ignore zone objects when selecting.</td>
</tr>
</tbody>
</table>

C - 1.11 Selected Object Options

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Reduce the size of the object. If multiple objects are selected, all object positions will be shifted towards the first object selected.</td>
</tr>
<tr>
<td>+</td>
<td>Increase the size of the object. If multiple objects are selected, all object positions will be shifted away from the first object selected.</td>
</tr>
<tr>
<td>Delete</td>
<td>Delete selected object(s).</td>
</tr>
<tr>
<td>Control-C</td>
<td>Copy selected object(s) to the clipboard.</td>
</tr>
<tr>
<td>Control-V</td>
<td>Paste selected object(s) from the clipboard.</td>
</tr>
<tr>
<td>Control-X</td>
<td>Cut selected object(s) to the clipboard, deleting them from the plot.</td>
</tr>
</tbody>
</table>

C - 1.12 Time Navigation

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Jump to start.</td>
</tr>
<tr>
<td>Left Arrow</td>
<td>Step backward.</td>
</tr>
<tr>
<td>Space bar</td>
<td>Play or pause animation.</td>
</tr>
</tbody>
</table>
C - 1.13 Other Keyboard Operations

<table>
<thead>
<tr>
<th>Action</th>
<th>Middle Button*</th>
<th>Right Button</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click</td>
<td>Redraw. If the pointer is in the active frame, Tecplot 360 EX will redraw the active frame. Otherwise, redraw all frames.</td>
<td>Switch from the current tool to the Selector.</td>
</tr>
<tr>
<td>Drag</td>
<td>Smoothly zoom in or out. An upward motion zooms out. A downward motion zooms in.</td>
<td>Translate.</td>
</tr>
<tr>
<td>Alt-Drag</td>
<td>In 3D Cartesian plots, move the viewer further from (upward motion) or closer to (downward motion) the object. In all other plot types, this behaves like the Drag action.</td>
<td>Smoothly zoom in or out. An upward motion zooms out. A downward motion zooms in.</td>
</tr>
</tbody>
</table>

* Mac users can simulate a click of the middle button by holding down the Control key on the keyboard while clicking the right mouse button. Hold any additional keys (such as Alt/Option) along with Control to invoke extended mouse operations.

The above actions (and other mouse gestures) are configurable by editing your tecplot.cfg file. Find the $INTERFACE MOUSEACTIONS command and look for the MIDDLEBUTTON or RIGHTBUTTON section within that command.

519
Shortcuts
License Management

D - 1 Entering Your License

The first time you launch Tecplot 360 EX after a fresh installation, you will be prompted to enter your license information:
License Management

You will also see this dialog if Tecplot 360 EX cannot validate your license information (for example, because your evaluation license has expired, or because the network license server is not available). Additionally, you may change your license information at any time from the Help menu.

SYSTEM ADMINISTRATORS

Tecplot products store their license configuration file in a platform-specific location. Each Tecplot product has its own license configuration file.

Windows: C:\Users\<username>\AppData\Local\Tecplot
Linux: ~/.local/share/data/tecplot
Mac OS X: ~/Library/Application Support/Tecplot

The above directories are specific to the individual workstation users. If you want all users of the computer to use the same license configuration for a given Tecplot product, you may move the license configuration file to the product installation directory after initial license setup.

To prevent users from editing the license configuration, you may then change the permissions on the license file to be writable only by an administrator or root user.

How you install your license information depends on what type of license you have.

- If you wish to evaluate the product before purchasing, you may obtain an Evaluation license with a single click. See Evaluation License Setup.
- If you have an Activation Code for a Single-User license and have Internet access, you enter the activation code. See Single-User License Setup Using An Activation Code.
- If you have a License File for a Single-User license, you select the license file. See Single-User License Setup Using A License File.
- If you have a Network license, you specify the server name and port number of the RLM license server on your network. See Network License Setup.
- If you have a License File for a Single-User license, you select the license file. See Single-User License Setup Using A License File.
D - 1.1 Evaluation License Setup

To obtain a time-limited evaluation license key so you can try the product before purchasing, make sure the “Evaluation” license type is selected in the Licensing dialog, then click Begin Evaluation. The product evaluation period begins. You will see a notice on the product’s Welcome Screen indicating when your evaluation license will expire.

This procedure requires an active Internet connection. If for some reason you cannot fully evaluate Tecplot 360 EX on an Internet-connected computer, or if you need additional time to complete your evaluation, contact Tecplot Support for a time-limited single-user license file, which may then be installed using the instructions in “Single-User License Setup Using A License File” on page 524.

D - 1.2 Single-User License Setup Using An Activation Code

If you received an activation code for your product, allowing it to be activated over the Internet, follow the instructions below. If you received a license key file, or if the workstation you have installed the product on does not have Internet access, see “Single-User License Setup Using A License File” on page 524.

To activate the product, simply enter or paste your activation code in the field provided. Then click Activate.
License Management

The license key corresponding to your activation code is downloaded to your computer, and Tecplot 360 EX uses that license.

D - 1.3 Single-User License Setup Using A License File

You will need the license file sent to you by Tecplot as an e-mail attachment. Please save it to a file on your computer in an easy-to-find location, such as the Desktop.

1. Make sure the “License File” option is selected in the Licensing dialog.
2. Click **Open License File**. A file browser appears. Select the license file e-mailed to you, then click **Open**. Alternatively, you can Copy and Paste the contents of the license file to the available field.
3. Click **OK** to save the license information.

Tecplot 360 EX now uses the chosen license.

If you do not have your license file, or have lost it, click **Request License** in the Licensing dialog for instructions on how to obtain it.

1. Make sure the “License File” option is selected in the Licensing dialog.
2. Click **Open License File**. A file browser appears. Select the license file e-mailed to you, then click **Open**. Alternatively, you can Copy and Paste the contents of the license file to the available field.
 The message “Status: Valid” appears in the Current License Information panel at the upper right.
3. Click **OK** to save the license information.

Tecplot 360 EX now uses the chosen license.

If your license requires a USB license security key (“dongle”), make sure it is connected to your computer before launching Tecplot 360 EX. It must remain connected while the product is running.
D - 1.4 Network License Setup

To use a network license, you or your system administrator must first install the Reprise License Manager (RLM) and the license key for your product on a network server. (See the installation instructions included with the RLM download.) Once this has been accomplished, follow these steps:

1. Make sure the “Network” license type is selected in the Licensing dialog.
2. Enter the server name (you may use a hostname or IP address) and port number of the license server in the fields provided.
3. Click OK to save the license information.

Tecplot 360 EX will now use a license obtained from the license server.

If the product is unable to obtain a license key, an error message will appear, and you should verify that you have specified the correct network license information.

D - 2 License Roaming

Network license users who need to use Tecplot 360 EX while not connected to the same network as their license server (for example, while traveling) can use license roaming. License roaming allows you to use the product without access to the license server for a limited period of time. The roaming license is considered “in use” by the server continuously until it expires or is returned.

To manage license roaming, choose License Roaming from the Help menu. The License Roaming dialog appears.
License Management

D - 2.1 Starting Roaming
To start roaming, choose the expiration date for the roaming license using the pop-out calendar that appears when you click the roaming expiration date. Your license will expire at the end of that day, at midnight.

Click *Begin Roam* to obtain the roaming license and begin roaming.

The license server administrator and the license key may restrict the maximum amount of time users may roam and/or the total number of licenses that may roam at a given time. Additionally, only one instance of Tecplot 360 EX may be run while roaming.

While roaming, the license status is noted as Roaming in the Licensing dialog, and the expiration date of the roaming session is also shown. You may not change license information while roaming.

When you are getting close to your roaming license's expiration date, a notification appears in the Welcome Screen at startup.

Do not upgrade Tecplot 360 EX while roaming. If you do, your license may no longer work correctly. Set the `RLM_ROAM` environment variable to -100 before launching to rectify this situation (see `RLM_ROAM`).

D - 2.2 Ending Roaming
Your roaming license expires automatically at the end of the day (that is, midnight) on the day you selected when you began roaming. After this date, your computer must be able to connect to the network license server to run Tecplot 360 EX.

You may also end roaming early and make your license available for other users. To do this, you must first connect your computer to a network that allows you to reach the license server. Then choose *License Roaming* from the Help menu and click the *End Roam* button in the License Roaming dialog.

D - 2.3 `RLM_ROAM`
You can initiate roaming from the command line by setting the `RLM_ROAM` environment variable to the number of days you wish to roam, then starting Tecplot 360 EX from that command line session. The roaming session expires at the end of the day after the number of days specified (for example, if it is noon Tuesday, and you set `RLM_ROAM` to 2, the roaming license expires at the end of the day Thursday). `RLM_ROAM`
License Roaming

may also be set to the special value today to have the roaming license expire at the end of the current day (the value 0 means that no changes to roaming will be made).

If RLM_ROAM is set permanently (for example, using the System Properties in Windows), the license roaming will be refreshed each time you run Tecplot 360 EX while connected to the network. If RLM_ROAM is 1, for example, each time you start Tecplot 360 EX, the roaming license is refreshed to expire at midnight the following day. This allows you to easily take your computer home with you any night and continue using Tecplot 360 EX while disconnected from the license server, without needing to explicitly roam each day.

You may end a roaming session early by setting RLM_ROAM to -1 before launching Tecplot 360 EX.

If you are having trouble ending your roaming early (a common cause is upgrading Tecplot 360 EX while roaming), try setting RLM_ROAM to -100 before launching Tecplot 360 EX. The roaming license will be forcibly removed from your workstation, and Tecplot 360 EX will begin requesting a regular license from a license server at each startup. At this point you can obtain a fresh roaming license, if desired. The reservation for your previous roaming license will, however, continue to be held on the license server that issued it until it expires.
Glossary

The following terms are used throughout the Tecplot 360 EX User’s Manual and are included here for your reference.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Plotting in two dimensions. Line plots of one or more variables (XY and Polar Line plots) are not considered.</td>
</tr>
<tr>
<td>2D Cartesian Plot</td>
<td>A plot displaying a 2D scattering of points, surfaces, or volumes using two orthogonal axes.</td>
</tr>
<tr>
<td>3D</td>
<td>Plotting in three dimensions. Three-dimensional plotting can be subdivided into 3D surface and 3D volume.</td>
</tr>
<tr>
<td>3D Cartesian Plot</td>
<td>A plot displaying a 3D scattering of points, surfaces, or volumes using three orthogonal axes.</td>
</tr>
<tr>
<td>3D Sorting</td>
<td>The process that Tecplot 360 EX uses to determine which surface to plot first. In this process, the cells are sorted relative to the viewer and plotted beginning with the farthest point away and ending with the closest. Sorting is used when printing 3D plots or rendering translucent 3D objects on the screen.</td>
</tr>
<tr>
<td>3D Surface</td>
<td>Three-dimensional plotting confined to a surface. For example, the surface of a wing.</td>
</tr>
<tr>
<td>3D Volume</td>
<td>Three-dimensional plotting of data that includes interior data points of a volume, as well as those on the surface. For example, the vector field around a wing.</td>
</tr>
<tr>
<td>Active Zone</td>
<td>A zone that is displayed in the active plot, as determined in the Zone Style dialog.</td>
</tr>
<tr>
<td>Add-on</td>
<td>Any component or program which provides additional functions to Tecplot 360 EX.</td>
</tr>
<tr>
<td>Anchor point</td>
<td>The fixed point of an object on the plot.</td>
</tr>
<tr>
<td>Antialiasing</td>
<td>The process of removing or reducing the jagged distortions in curves and diagonal lines.</td>
</tr>
<tr>
<td>ASCII Data File</td>
<td>A data file composed of code in a human-readable and editable format, using the ASCII character set encoding.</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect Ratio</td>
<td>The ratio of lengths of the sides of an object. In the 3D Cartesian plot type, the ratio is that of the longest side to the shortest side.</td>
</tr>
<tr>
<td>Auxiliary Data</td>
<td>Metadata attached to zones, datasets, and frames.</td>
</tr>
<tr>
<td>Banded Contour Flooding</td>
<td>A field plot where the region between contour lines is filled with a constant color that corresponds to each variable.</td>
</tr>
<tr>
<td>Bars Mapping Layer</td>
<td>Mapping Layer (XY line plots only) where bars are used to depict the relationship between the dependent and independent variables.</td>
</tr>
<tr>
<td>Binary Data File</td>
<td>A data file composed of machine-readable data. This type of file is created by converting ASCII data files with Preplot, or by directly creating them from an application.</td>
</tr>
<tr>
<td>Blanking</td>
<td>A feature of Tecplot 360 EX that excludes certain cells and points from a plot.</td>
</tr>
<tr>
<td>Block</td>
<td>A data file format in which the data is listed by variable. All the point values of the first variable are listed first, then all the point values of the second variable, and so forth.</td>
</tr>
<tr>
<td>Boundary Cell Faces</td>
<td>A set of un-blanked cell faces in a 3D volume zone which have only one neighboring volume cell. In contrast, interior cell faces have two neighboring volume cells, one on either side, which share the face. For an IJK-ordered zone the boundary cell faces are on the exterior of the zone. That is, the first and last I-planes, the first and last J-planes, and the first and last K-planes. For a finite element 3D volume zone, boundary cell faces are on the exterior of the zone and the surface of any voids within the zone.</td>
</tr>
<tr>
<td>Bounding Box of Data</td>
<td>The smallest rectangular box, aligned with the coordinate axes, which completely encloses all data points.</td>
</tr>
<tr>
<td>Brick</td>
<td>An element type of finite element volume data composed of eight node points arranged in a hexahedron-like format. This element type is used in 3D volume plotting.</td>
</tr>
<tr>
<td>Carpet Plot</td>
<td>A 3D surface plot where a variable is plotted in the third dimension and is singular-valued with respect to the independent variables.</td>
</tr>
<tr>
<td>Cartesian Plot</td>
<td>A 2D or 3D plot of some variable by location on a single plane using two axes (or in a volume using three axes).</td>
</tr>
<tr>
<td>Cell</td>
<td>Either an element of finite element data, or the space contained by one increment of each index of IJK or IJK-ordered data.</td>
</tr>
<tr>
<td>Cell-centered Values</td>
<td>Values located at the center of the cell (assumed to be the centroid).</td>
</tr>
<tr>
<td>Coordinate</td>
<td>Any of a set of numbers used in specifying the location of a point on a plot.</td>
</tr>
<tr>
<td>Configuration File</td>
<td>File (tecplot.cfg) containing Tecplot 360 EX defaults. See Section 30 - 2 “Configuration Files”, on page 460.</td>
</tr>
<tr>
<td>Color Map</td>
<td>A color spectrum used to plot contour flooding and multi-colored objects.</td>
</tr>
<tr>
<td>Connectivity List</td>
<td>The portion of a finite element data file which defines the elements or cells by listing the relationships between points. The number of points per cell is determined by the element type.</td>
</tr>
<tr>
<td>Continuous Contour Flooding</td>
<td>A field plot where a color is assigned to each point in a mesh, based upon the contour variable and the color map. Each face is filled with colors interpolated between the corner nodes. This results in a smooth variation of color over the surface.</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Contour</td>
<td>A field plot type that plots iso-valued lines, or color flooding based on the values of a specified variable.</td>
</tr>
<tr>
<td>Curve Type</td>
<td>The function used to fit the data points in an XY-plot.</td>
</tr>
<tr>
<td>Custom Labels</td>
<td>Text strings contained within a data file or text geometry file which define labels for your axes or contour table. You may select Custom Labels anywhere you can choose a number format, the result is the text strings in place of numbers.</td>
</tr>
<tr>
<td>Cutaway Plot</td>
<td>A 3D volume plot where a portion of a 3D volume zone is cut-away by blanking to reveal the interior.</td>
</tr>
<tr>
<td>Cutting Plane</td>
<td>A planar surface used to slice 3D volume or surface zones.</td>
</tr>
<tr>
<td>Data File</td>
<td>A file that contains data used for plotting in Tecplot 360 EX.</td>
</tr>
<tr>
<td>Data Format</td>
<td>The type of zone data as specified by the format parameter in a Tecplot data file, such as BLOCK or POINT.</td>
</tr>
<tr>
<td>Data Loader</td>
<td>A Tecplot 360 EX add-on which allows you to read non-Tecplot data files.</td>
</tr>
<tr>
<td>Data Point</td>
<td>An XYZ-point at which field variables are defined.</td>
</tr>
<tr>
<td>Data Smoothing</td>
<td>A process that shifts the value of a variable at a data point towards an average of the values at its neighboring data points to reduce "noise" and lessen discontinuities in data.</td>
</tr>
<tr>
<td>Dataset</td>
<td>A set of one or more zones. A dataset may be plotted in one or more frames. However, a single frame may only plot one dataset. A dataset may be created by loading one or more data files.</td>
</tr>
<tr>
<td>Dependent</td>
<td>An axis mode requiring the axes to maintain a fixed ratio to one another.</td>
</tr>
<tr>
<td>Depth</td>
<td>For image export, the number of bits stored per pixel.</td>
</tr>
<tr>
<td>Derived Volume Objects</td>
<td>Graphic objects which are visible in the plot and created from zone data, but are not zones, i.e. an Iso-Surface, a Slice, or a Streamtrace.</td>
</tr>
<tr>
<td>Display List</td>
<td>A group of OpenGL commands that have been stored for subsequent execution. Using a display list can, depending upon the hardware involved, dramatically speed up graphics rendering. Using display lists also requires more memory.</td>
</tr>
<tr>
<td>Draw Level</td>
<td>A draw behavior setting for modifying the image quality and rendering speed during various operations, such as rotation. Options vary from Trace (a simplified wire frame mesh which is rendered quickly) to Full.</td>
</tr>
<tr>
<td>Dynamic Text</td>
<td>Special placeholders added to text that change with the data or the display environment.</td>
</tr>
<tr>
<td>Edge</td>
<td>A 2D or 3D field plot option. Plotting the edge of a zone plots the connection of all outer lines (U-ordered zones), finite element surface zones, or planes (IJK-ordered zones).</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element Type</td>
<td>The form of individual elements in a finite element zone. There are four types of cell-based finite element zones: Triangle and Quadrilateral (finite element surface types), and Tetrahedron and Brick (finite element volume types). For cell-based finite elements, the element type of a zone determines the number of nodes per element and their orientation within an element. There are two types of face-based finite element zones: polygonal (2D) and polyhedral (3D). For face-based elements, the number of nodes per element is variable.</td>
</tr>
<tr>
<td>Error Bars Mapping Layer</td>
<td>XY Line mapping layer where a second dependent variable (error) is used to show the accuracy of the first dependent variable, typically used in conjunction with the Bars Mapping Layer.</td>
</tr>
<tr>
<td>Exposed Cell Faces</td>
<td>The set of those cell faces in 3D volume zones that have only one un-blanked neighboring volume cell. By comparison, interior cell faces have two neighboring cells, one on either side, which share the face. The exposed cell faces include boundary cell faces and interior cell faces exposed by blanking. (One of the neighboring cells has been blanked.)</td>
</tr>
<tr>
<td>Eye Coordinate System</td>
<td>Coordinate system aligned with the Grid coordinate system so that objects that are drawn move with the data as you zoom and translate, but remain fixed when you rotate the plot.</td>
</tr>
<tr>
<td>Extra 3D Sorting</td>
<td>Perform extra work to resolve hidden surface problems encountered during 3D sorting.</td>
</tr>
<tr>
<td>Face Neighbor</td>
<td>A neighboring cell whose faces share all nodes in common with the selected cell.</td>
</tr>
<tr>
<td>FE</td>
<td>An abbreviation for finite element (a common means of arranging data for calculations, often referred to as “unordered” or “unstructured”).</td>
</tr>
<tr>
<td>FEA</td>
<td>An abbreviation for finite element analysis. See Section 4 - 9 “FEA Loader” for information and supported formats.</td>
</tr>
<tr>
<td>Fence Plot</td>
<td>A plot of planes of a 3D data field.</td>
</tr>
<tr>
<td>FE Surface</td>
<td>A finite element zone of the element type Triangle or Quadrilateral, or Polygon. These zones are used for 2D and 3D surface plots.</td>
</tr>
<tr>
<td>FE Volume</td>
<td>A finite element zone of the element type Tetrahedron or Brick, or Polyhedron. These zones are used for 3D volume plots.</td>
</tr>
<tr>
<td>Field Map</td>
<td>A collection of zones for 2D and 3D field plots. A common style can be easily applied to all zones in the selection.</td>
</tr>
<tr>
<td>Field Plot</td>
<td>Includes 2D Cartesian and 3D Cartesian plot types. Generally used to display the spatial relationship of data. Mesh, Contour, Vector, Scatter, and Shade are all considered field plots. XY and Polar Line plots and the Sketch plot type are not field plots.</td>
</tr>
<tr>
<td>File Path</td>
<td>A way to specify the directory for Tecplot 360 EX to locate a given file. For instance, a linked layout saved with an absolute file path contains the complete directory structure to load the associated file starting with the root directory or (on Windows) the drive letter.</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Finite Element</td>
<td>A type of data point ordering. Data is arranged by listing the data points (called nodes), and then listing their relationships (called elements). The element type of the zone determines the number of nodes which are contained in each element, as well as the exact relationship of nodes within an element. There are six different element types supported by Tecplot 360 EX: Triangle, Quadrilateral, Tetrahedron, Brick, Polyhedral and Polyoffset. See also: Connectivity List and Node.</td>
</tr>
<tr>
<td>Font Modifier</td>
<td>The modifier used to embed Greek, Math, or User-Defined characters in a text string.</td>
</tr>
<tr>
<td>Frame</td>
<td>Area within the workspace where sketches and plots are created. The workspace shows a page at a time, and each page can contain multiple frames.</td>
</tr>
<tr>
<td>Frame Coordinate System</td>
<td>Coordinate system fixed to the frame that does not change when the plot is zoomed, translated, or rotated.</td>
</tr>
<tr>
<td>Gouraud Shading</td>
<td>Shading used to achieve smooth lighting on low-polygon surfaces by linearly interpolating a color or shade across a polygon.</td>
</tr>
<tr>
<td>Grid Area</td>
<td>One or more rectangular regions defined and bounded by the grid axes.</td>
</tr>
<tr>
<td>Grid Axes</td>
<td>An axis option which displays the coordinates of the grid along the various spatial dimensions.</td>
</tr>
<tr>
<td>Grid Coordinate System</td>
<td>The grid coordinate system consists of two dimensional physical coordinates that are aligned with the coordinate system used by the plot axes.</td>
</tr>
<tr>
<td>Gridline</td>
<td>A set of lines drawn from one or more axes that extend from the tick marks on an axis across the grid area.</td>
</tr>
<tr>
<td>Grid Point</td>
<td>In 2D, the intersection of gridlines.</td>
</tr>
<tr>
<td>Hidden Line</td>
<td>Mesh type where mesh lines that appear behind other plot layers are not drawn.</td>
</tr>
<tr>
<td>I-Ordered</td>
<td>A type of data point ordering where each point is listed one at a time (that is, by one index). Used mainly in XY plots. In 2D or 3D, this type of data point ordering is sometimes called irregular, and is only useful for scatter plots, or for interpolating or triangulating into 2D, 3D surface, or 3D volume zones. (This type of data can also be used for 2D or 3D vector plots if streamtraces are not required.)</td>
</tr>
<tr>
<td>IJK-Ordered</td>
<td>A type of data point ordering where the points are arranged in an array used for 2D and 3D surface plotting.</td>
</tr>
<tr>
<td>Image Format</td>
<td>Any of the raster or bit-mapped graphic formats supported by Tecplot 360 EX.</td>
</tr>
<tr>
<td>Inactive Zone</td>
<td>A zone loaded into Tecplot 360 EX which does not appear in the plot. A zone can be deactivated using the Zone Show option on any page of the Zone Style dialog.</td>
</tr>
<tr>
<td>Independent</td>
<td>Axis mode allowing each axis to have a range that is not affected by the ranges of any other axis or axes.</td>
</tr>
<tr>
<td>Interpolate</td>
<td>To assign new values for the variables at data points in one zone based on the data point values in another zone (or set of zones).</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolate Mode</td>
<td>When probing is activated using a single mouse click, the value returned is linearly interpolated from all nodes in the cell. See also: “Nearest Point Mode” on page 535.</td>
</tr>
<tr>
<td>Internal Macro Variable</td>
<td>A read-only macro variable which allows you to access certain key values in Tecplot 360 EX. For example, $NUMVARS gives the number of variables.</td>
</tr>
<tr>
<td>I-Plane</td>
<td>In an ordered zone, the connected surface of all points with a constant I-index. In reality, I-planes may be cylinders, spheres, or any other shape.</td>
</tr>
<tr>
<td>Irregular Data</td>
<td>Points which have no order, or at least no order which can be easily converted to IJK or IJK-ordering.</td>
</tr>
<tr>
<td>Iso-Surface</td>
<td>A surface within a 3D zone where the contour variable has a constant value at all locations.</td>
</tr>
<tr>
<td>Journal</td>
<td>Log of data manipulation/creation/deletion instructions.</td>
</tr>
<tr>
<td>J-Plane</td>
<td>In an ordered zone, the connected surface of all points with a constant J-index. In reality, J-planes may be cylinders, spheres, or any other shape.</td>
</tr>
<tr>
<td>Kriging</td>
<td>A technique to interpolate the value of a random field at an unobserved location from observations of its value at nearby locations.</td>
</tr>
<tr>
<td>K-Plane</td>
<td>In an IJK-ordered zone, the connected surface of all points with a constant K-index. In reality, K-planes may be cylinders, spheres, or any other shape.</td>
</tr>
<tr>
<td>Layout File</td>
<td>A specialized macro file with extension .lay which preserves a plot created within Tecplot 360 EX. When the layout is opened, it restores Tecplot 360 EX to the state it was in when the layout file was saved.</td>
</tr>
<tr>
<td>Layout Package File</td>
<td>A binary layout file with the .lpk extension which has the data embedded in the file.</td>
</tr>
<tr>
<td>Line Map</td>
<td>A set of points from a single zone where one variable is assigned to an X-axis and another is assigned to a Y-axis. You can define many XY-maps for an XY-plot.</td>
</tr>
<tr>
<td>Macro</td>
<td>A file containing a list of instructions, called macro commands, which can duplicate virtually any action performed in Tecplot 360 EX.</td>
</tr>
<tr>
<td>Macro Command</td>
<td>An instruction given to Tecplot 360 EX in a macro file. Macro commands always start with a dollar sign and then an exclamation mark. For example, $!Redraw refreshes a plot view.</td>
</tr>
<tr>
<td>Macro File</td>
<td>A file which contains a series of macro commands. Macro files are run from the command line, or through the Play option of the Scripting menu.</td>
</tr>
<tr>
<td>Macro Function</td>
<td>A self-contained macro sub-routine.</td>
</tr>
<tr>
<td>Macro Variable</td>
<td>A holding place for numeric values in a macro file. There are two types of macro variables: user-defined (you set and retrieve the value), or internal (Tecplot 360 EX sets the value and you may retrieve it).</td>
</tr>
<tr>
<td>Map Layer</td>
<td>One way of displaying a line mapping, such as with line, bars, symbols, and so forth. One mapping may be displayed with one or more layers.</td>
</tr>
<tr>
<td>Median Axis</td>
<td>In 3D, the grid axis which when scaled is not the shortest nor the longest axis.</td>
</tr>
<tr>
<td>Menu Bar</td>
<td>The top bar of the Tecplot 360 EX screen used to select menu options.</td>
</tr>
<tr>
<td>Mesh</td>
<td>A 2D or 3D field plot type which plots connections between data points.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Multi-Colored</td>
<td>Any Tecplot 360 EX object which is colored by the value of the contouring variable. Multi-colored objects may include mesh, scatter symbols, vectors, contour lines, and streamtraces.</td>
</tr>
<tr>
<td>Nearest Point Mode</td>
<td>When probing is activated using a Control+click, the value returned is the precise value of the closest data point. See also: Section “Interpolate Mode” on page 534.</td>
</tr>
<tr>
<td>Node</td>
<td>A point in finite element data.</td>
</tr>
<tr>
<td>Number Format</td>
<td>The style of numbers to display for a data or axis label; exponent, integer, float, and so forth.</td>
</tr>
<tr>
<td>OpenGL</td>
<td>A graphics library for high-end 3D graphics. It commonly takes advantage of hardware acceleration for 3D rendering.</td>
</tr>
<tr>
<td>Ordered Data</td>
<td>A type of data point organization which consists of a parameterized series of points. There are seven types of ordered data: I, J, K, IJ, JK, IK, and IJK-ordered. I, IJ, and IJK-ordered are the most common.</td>
</tr>
<tr>
<td>Orthographic Projection</td>
<td>A plot view in which the shape of the object is independent of distance. This is used for displaying physical objects when preserving the true lengths is important.</td>
</tr>
<tr>
<td>Overlay</td>
<td>Mesh type where mesh lines are drawn over all field-plot layers, except for vector and scatter layers.</td>
</tr>
<tr>
<td>Pick</td>
<td>Select an item in the plot area by clicking on it with the mouse.</td>
</tr>
<tr>
<td>Plot Type</td>
<td>Determines the type of plot which is displayed in a frame. For example, 2D Cartesian plot, 3D Cartesian plot, XY Line plot, Polar Line plot, or Sketch plot.</td>
</tr>
<tr>
<td>PLOT3D</td>
<td>A plotting package developed by NASA.</td>
</tr>
<tr>
<td>Polar Line Plot</td>
<td>A plot of radius versus angle, or vice versa. The polar axes are the radial axis (by default zero at the origin) and theta axis (by default zero for any data on the right running horizontal line).</td>
</tr>
<tr>
<td>Polygonal</td>
<td>A 2D, face-based finite element type. The number of nodes per element is variable. That is, a single polygonal zone may contain triangular, quadrilateral, hexagonal, etc. elements.</td>
</tr>
<tr>
<td>Polyhedral</td>
<td>A 3D, face-based finite element type. The number of nodes per element is variable. That is, a single polyhedral zone may contain tetrahedral and brick (and other) elements.</td>
</tr>
<tr>
<td>Polylines</td>
<td>A shape composed of one or more joined line segments. May be closed (i.e., a polygon) or open.</td>
</tr>
<tr>
<td>Polytope</td>
<td>The generalization to any dimension of “polygon” in two dimensions, “polyhedron” in three dimensions, and “polychoron” in four dimensions.</td>
</tr>
<tr>
<td>Pop</td>
<td>Bring selected geometries or text to the top of the viewstack.</td>
</tr>
<tr>
<td>Precise Dot Grid</td>
<td>The points of intersection of the imaginary lines extending from the X- and Y-axes’ tick marks.</td>
</tr>
<tr>
<td>Primary Corner</td>
<td>The point in an ordered zone’s cell that has the minimum index values for that cell, or the first listed node of a finite element cell.</td>
</tr>
<tr>
<td>Probe</td>
<td>To obtain interpolated values of the dataset variables at a specified location by clicking on a point in the data region.</td>
</tr>
<tr>
<td>Push</td>
<td>Send selected geometries or text to the bottom of the viewstack.</td>
</tr>
</tbody>
</table>
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrilateral</td>
<td>An element type of finite element surface data which is composed of four node points arranged in a quadrilateral. Used in 2D and 3D surface plotting.</td>
</tr>
<tr>
<td>Quick Macro Panel</td>
<td>A user-defined panel accessed from the Scripting menu which allows quick access to your macro functions.</td>
</tr>
<tr>
<td>Rake</td>
<td>A line along which a number of streamtraces may be seeded.</td>
</tr>
<tr>
<td>RGB Color Flooding</td>
<td>The assignment of color based on Red, Green, and Blue components defined at field data locations.</td>
</tr>
<tr>
<td>Ribbon</td>
<td>(See Streamribbon.)</td>
</tr>
<tr>
<td>Richardson Extrapolation</td>
<td>A sequence acceleration method, used to improve the rate of convergence of a sequence.</td>
</tr>
<tr>
<td>Rod</td>
<td>(See Streamrod.)</td>
</tr>
<tr>
<td>Scatter</td>
<td>A 2D or 3D field plot type which plots a symbol at each data point.</td>
</tr>
<tr>
<td>Shade Plot</td>
<td>A 2D or 3D field plot type which plots solid color or colors with lighting effect over the cells of the data.</td>
</tr>
<tr>
<td>Sharing</td>
<td>Variable sharing allows a single storage location to be used by more than one party. For example, if the X-variable is shared between zones five and seven, only one storage location is created. The storage is not freed by Tecplot 360 EX until the number of parties accessing the data is reduced to zero. Variables and connectivity information may be shared.</td>
</tr>
<tr>
<td>Sidebar</td>
<td>A movable, dockable panel (by default located on the left side of the Tecplot 360 EX window) which provides quick access to frequently-used functionality. Tecplot 360 EX includes multiple sidebars: Plot, Frames, Pages, Probe, and Quick Macro.</td>
</tr>
<tr>
<td>Sketch Plot</td>
<td>A plot which displays only text and geometries, not any data-derived elements.</td>
</tr>
<tr>
<td>Slice</td>
<td>A set of data created by the intersection of a plane with 3D zones.</td>
</tr>
<tr>
<td>Snap-to-Grid</td>
<td>Lock any object on the screen to the closest grid point. The position and size of the object will be affected by changes to the grid.</td>
</tr>
<tr>
<td>Snap-to-Paper</td>
<td>Lock any object on the screen to the underlying paper: The position and size of the object will not be affected by changes to the grid.</td>
</tr>
<tr>
<td>Sorting</td>
<td>The process of resolving hidden-surface problems during display of a 3D plot.</td>
</tr>
<tr>
<td>Specular Highlights</td>
<td>Highlights with qualities similar to those of a smooth reflecting surface such as metal, where light is reflected so intensely from some points that the plot appears white (or the color of the light) at those points.</td>
</tr>
<tr>
<td>Status Line</td>
<td>The bar located at the bottom of the Tecplot 360 EX screen which provides "hover" help for tools and acts as a progress bar during calculations.</td>
</tr>
<tr>
<td>Strand</td>
<td>A series of transient zones that represent the same part of a dataset at different times.</td>
</tr>
<tr>
<td>Stream</td>
<td>Particle traces through a vector field.</td>
</tr>
<tr>
<td>Stream Format</td>
<td>The type of streamtraces being placed in Tecplot 360 EX. For example, Surface Line, Volume Line, Volume Ribbon, or Volume Rod.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Streamline</td>
<td>A 2D or 3D line which is parallel to the vector field along its entire length. For a steady state vector field, this is the same as a simple particle trace which marks the path of a massless particle in the vector field.</td>
</tr>
<tr>
<td>Streamribbon</td>
<td>A particle trace with a width which not only follows the flow field (its center being a regular streamline), but which also twists with the vorticity of the vector field.</td>
</tr>
<tr>
<td>Streamrod</td>
<td>A particle trace with a polygonal cross-section and a width which not only follows the flow field (its center being a regular streamline), but which also rotates with the vorticity of the vector field.</td>
</tr>
<tr>
<td>Streamtrace</td>
<td>Any type of particle trace: streamlines, streamribbons, or streamrods.</td>
</tr>
<tr>
<td>Streamtrace Termination Line</td>
<td>A polyline that terminates any streamtraces that cross it.</td>
</tr>
<tr>
<td>Streamtrace Zone</td>
<td>Any streamtrace which has been extracted to form a new zone.</td>
</tr>
<tr>
<td>Stylesheet</td>
<td>A type of file which contains the definition of how the plot in a single frame is to be plotted. The stylesheet does not contain any zone data but does contain information about views, axes positions, zone attributes, and so forth.</td>
</tr>
<tr>
<td>Supersampling Factor</td>
<td>When antialiasing an image for export, the factor Tecplot 360 EX uses when creating an intermediate image that is then resized down to the final image size. The larger the value, the smoother the resulting image at the cost of performance. Values of more than 3 are seldom necessary.</td>
</tr>
<tr>
<td>Surface Line</td>
<td>A type of 3D streamline which is confined to remain on a 3D surface. Also used to refer to streamlines.</td>
</tr>
<tr>
<td>Symbols Mapping Layer</td>
<td>Line plot where symbols are used to depict the relationship between the dependent and independent variables.</td>
</tr>
<tr>
<td>Time/Date</td>
<td>A type of axis label format with which you can label axes by using a multitude of codes that can display data in years, months, days, hours, minutes, and seconds.</td>
</tr>
<tr>
<td>Toolbar</td>
<td>The bar at the top of the Tecplot 360 EX workspace.</td>
</tr>
<tr>
<td>Tetrahedron</td>
<td>An element type of finite element volume data which is composed of four node points arranged in a tetrahedron. (Used in 3D volume plotting.)</td>
</tr>
<tr>
<td>Transient Data</td>
<td>Data that has a time component in addition to a spatial coordinate.</td>
</tr>
<tr>
<td>Translucency</td>
<td>A property allowing you to see through an object to areas within or beyond it. In Tecplot 360 EX you may vary the amount of translucency, controlling the extent that an object closer to you obscures an object it overlays.</td>
</tr>
<tr>
<td>Triangle</td>
<td>An element type of finite element surface data which is composed of three node points. (Used in 2D and 3D surface plotting.)</td>
</tr>
<tr>
<td>Unordered or Unorganized Data</td>
<td>(See Irregular Data.)</td>
</tr>
<tr>
<td>Value-Blanking</td>
<td>A feature of Tecplot 360 EX used to trim or eliminate cells based on one or more user-defined constraints for variable values.</td>
</tr>
<tr>
<td>Variable</td>
<td>One of the values defined at every data point in a dataset.</td>
</tr>
<tr>
<td>Vector Layer</td>
<td>A field plot showing the direction and or the magnitude of vector quantities.</td>
</tr>
<tr>
<td>Volume Line</td>
<td>A type of 3D streamline which is not confined to remain on a surface and may travel through 3D volume data.</td>
</tr>
<tr>
<td>Glossary</td>
<td>Definition</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Volume Zone</td>
<td>Any zone that is IJK-ordered, finite element tetrahedron, or finite element brick.</td>
</tr>
<tr>
<td>Vorticity</td>
<td>The measurement of the tendency of a vector field to rotate about a point. (Also called “curl.”)</td>
</tr>
<tr>
<td>Wire Frame</td>
<td>Mesh type where mesh lines are drawn behind all other plot layers.</td>
</tr>
<tr>
<td>Workspace</td>
<td>The portion of your screen where you can create Tecplot 360 EX frames. This includes but is not limited to the region covered by the displayed paper.</td>
</tr>
<tr>
<td>XY-Dependent</td>
<td>A 3D axis mode where X and Y are fixed (dependent), but Z is free to vary in ratio (independent).</td>
</tr>
<tr>
<td>XY Line Plot</td>
<td>Plots one variable assigned to one axis versus another variable assigned to another axis. Log plots, bar charts, and curve fitted lines are all examples of XY Line plots.</td>
</tr>
<tr>
<td>Zone</td>
<td>A subset of a dataset which is assigned certain plot types. Zones may be activated (plotted) or deactivated (not plotted). Each zone has one type of data ordering: I, IJ, IJK, or finite element. Zones are typically used to distinguish different portions of the data. For example, different calculations, experimental versus theoretical results, different time steps, or different types of objects, such as a wing surface versus a vector field around a wing.</td>
</tr>
<tr>
<td>Zone Layers</td>
<td>One way of displaying a 2D or 3D plot’s dataset. The plot is the sum of the active zone layers, which may include mesh, contour, vector, shade, scatter and edge.</td>
</tr>
</tbody>
</table>
Calculate Variables Reference

This chapter details the functions available in the Calculate dialog (accessed via the Calculate Variables command on the Analyze menu). Formulae, where not trivial, are given for each function. For functions that have equivalent PLOT3D function numbers, the numbers are listed as well. Refer to Section 21.6.4, "Selecting a Function," for a description of how to use these numbers.

F - 1 Symbols

The following symbols are used in formulae below. Other symbols are defined in context.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>((_)_\infty)</td>
<td>Reference or free-stream quantity.</td>
</tr>
<tr>
<td>(g)</td>
<td>Ratio of specific heats, (\frac{c_p}{c_v})</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Density, mass per unit volume (area in 2D).</td>
</tr>
<tr>
<td>(\xi)</td>
<td>Generalized curvilinear coordinate in the I-direction.</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Generalized curvilinear coordinate in the J-direction.</td>
</tr>
<tr>
<td>(\zeta)</td>
<td>Generalized curvilinear coordinate in the K-direction.</td>
</tr>
<tr>
<td>(\omega)</td>
<td>Vorticity</td>
</tr>
<tr>
<td>(a)</td>
<td>Speed of sound.</td>
</tr>
<tr>
<td>(c_p)</td>
<td>Specific heat at constant pressure.</td>
</tr>
<tr>
<td>(c_v)</td>
<td>Specific heat at constant volume.</td>
</tr>
<tr>
<td>(M)</td>
<td>Mach number.</td>
</tr>
</tbody>
</table>

Table F - 1: Analyze Symbology.
Scalar Grid Quality Functions

F - 2.1 I, J, K-aspect Ratio

The ratio of maximum edge length squared to face area:

\[AR = \frac{\text{Max edge length}^2}{\text{Area}} \]

For a rectangle or square, this simplifies to:

\[AR = \frac{\text{height}}{\text{width}} \]

For collapsed faces where the area is zero, the aspect ratio is set to zero.

For Polyhedral zones, the maximum aspect ratio is calculated for all faces of a given cell.

F - 2.2 I, J, or K-stretch Ratio

The ratio of the length of line segment I2-I3 to segment I1-I2 (or J or K):

\[\text{stretch ratio} = \frac{\text{length of segment I2-I3}}{\text{length of segment I1-I2}} \]

such that the stretch ratio is always > 1.

If either segment has zero length, the stretch ratio is set to one.

Note: If you have specified on the Geometry and Boundaries dialog that adjacent zones are connected, these stretch ratios will be made continuous across connected zone boundaries provided that the index directions are aligned.
F - 2.3 I, J, or K-face Skewness

The ratio of the two face diagonal lengths subtracted from one (the diagonals are ratioed so that this number is always non-negative):

face skewness = 1 - \frac{\text{length of shorter face diagonal}}{\text{length of longer face diagonal}}

For polyhedral zones, the cell value is the maximum skewness over all cell faces.

F - 2.4 Cell Diagonal1 or Diagonal2 Skewness

The ratio of the lengths of two body diagonals subtracted from one (always non-negative). There are four body diagonals. We choose pairs which would be coplanar in an unskewed cell, that is, (i,j,k) -> (i+1,j+1,k+1) and (i,j,k+1) -> (i+1,j+1,k).

cell skewness = 1 - \frac{\text{length of shorter body diagonal}}{\text{length of longer body diagonal}}

For polygonal zones, the ratio of the lengths will be zero.

F - 2.5 IJ, JK, KI, or Max Normals Skewness

The dot product of face unit normals for the two given faces.

IJ-skewness : \quad S_{ij} = |\hat{n}_i \cdot \hat{n}_j|

The following figure illustrates this for IJ-skewness.

F - 2.6 I, J, K, or Min Orthogonality

One minus the absolute value of the dot product of two unit vectors which point in the direction of two adjacent edges of the given face.
F - 2.7 I, J, K, or Min Nonplanarity

Two triangles are formed with the four nodes of the face, and the dot product of the two unit normals of those triangles is subtracted from one.

\[\text{non-planarity of the four-node face shown below} = 1 - \hat{\mathbf{n}}_{1} \cdot \hat{\mathbf{n}}_{2} \]

For polyhedral zones, the max over all cell faces is found.

F - 2.8 Jacobian

For ordered zones, the Jacobian is calculated with the standard formula.

\[J = \frac{1}{x_{c}(y_{c}z_{c} - y_{c}z_{c}) - x_{c}(y_{c}z_{c} - y_{c}z_{c}) + x_{c}(y_{c}z_{c} - y_{c}z_{c})} \]

The subscripts above represent partial derivatives, which are approximated with finite differences.

For finite element zones, Tecplot 360 EX approximates the Jacobian by inverting the average areas or volumes of the grid cells surrounding each node, 1/A or 1/V.

If the denominator of the above formula is zero (ordered zones), or all cells surrounding a node have zero area (finite element zones), the Jacobian is set to zero.

F - 2.9 Cell Volume

For ordered zones, the cell volume for a particular node (I, J, K) is the volume of the cell between nodes (I, J, K) and (I+1, J+1, K+1). In 2D, this function becomes cell area. Nodes on the IMax, JMax, and KMax boundaries are assigned the same value as the nodes at IMax-1, JMax-1, and KMax-1 respectively.

For finite element zones, the cell volume for a node is the average volume (area in 2D) of all cells of which that node is a part.
Vector Grid Quality Functions

F - 3 Vector Grid Quality Functions

F - 3.1 Grid I, J, or K-unit Normal
Vectors of unit length normal to I=, J=, or K=constant grid planes. unit normal for I = \hat{n}_I.
For polyhedral zones, the result will be set to (1, 0, 0).

F - 4 Scalar Flow Variables

F - 4.1 Density
The mass per unit volume of the fluid: $\rho = \frac{m}{V}$. PLOT3D function numbers: 100 (not normalized), or 101 (normalized).

F - 4.2 Stagnation Density

$$p^0 = \left\{ \begin{array}{ll}
\rho \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\frac{1}{\gamma-1}} & \text{(compressible)} \\
\rho & \text{(incompressible)}
\end{array} \right.$$

PLOT3D function numbers: 102 (not normalized), or 103 (normalized).

F - 4.3 Pressure
$p = \rho RT$ (compressible)
PLOT3D function numbers: 110 (not normalized), or 111 (normalized).

F - 4.4 Stagnation Pressure

$$p^0 = p \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\frac{\gamma}{\gamma-1}} \quad \text{(compressible)}$$
$$p^* = p + \frac{1}{2} \rho ||\mathbf{v}||^2 \quad \text{(incompressible)}$$
PLOT3D function numbers: 112 (not normalized) or 113 (normalized).

F - 4.5 Pressure Coefficient
PLOT3D function number: 114 (not normalized). There is no function number for normalized pressure

$$C_p = \frac{p - p_\infty}{\frac{1}{2} \rho u^2}$$

There is no function number for normalized pressure

coefficient, since reference value normalization is not possible (the free-stream pressure coefficient is zero).
Calculate Variables Reference

F - 4.6 Stagnation Pressure Coefficient

\[C_p = \frac{P - P_{\infty}}{\frac{1}{2} \rho u_0^2} \]

PLOT3D function number: 115 (not normalized). As above, there is no function number for normalized stagnation pressure coefficient.

F - 4.7 Pitot Pressure

Equals stagnation pressure for subsonic/incompressible flow. For supersonic flow:

\[P = \frac{\left(\frac{\gamma+1}{2} \right)^{\frac{1}{\gamma}}}{\left(\frac{2 \gamma M^2 - \frac{\gamma+1}{\gamma} \gamma^2}{\gamma+1} \right)^{\frac{1}{\gamma}}} \]

PLOT3D function number: 116 (not normalized).

F - 4.8 Pitot Pressure Ratio

The pitot pressure divided by the free-stream pressure. PLOT3D function number: 117 (not normalized).

F - 4.9 Dynamic Pressure

\[\frac{1}{2} \rho |V|^2 \]

PLOT3D function number: 118 (not normalized).

F - 4.10 Temperature

\[T = \frac{P}{\rho R} \text{ (compressible)} \]

PLOT3D function numbers: 120 (not normalized), or 121 (normalized).

F - 4.11 Stagnation Temperature

\[T^* = \begin{cases}
T \left(1 + \frac{\gamma - 1}{2} M^2 \right) & \text{(compressible)} \\
T & \text{(incompressible)}
\end{cases} \]

PLOT3D function numbers: 122 (not normalized), or 123 (normalized).

F - 4.12 Enthalpy

per unit mass:

\[h = c_p T \]

\[c_p = \frac{2 R}{\gamma - 1} \text{ (compressible only)} \]

PLOT3D function numbers: 130 (not normalized), or 131 (normalized).
Scalar Flow Variables

F - 4.13 Stagnation Enthalpy

per unit mass:

\[h^* = c^*_o T + \frac{1}{2} U^2 \]

PLOT3D function numbers: 132 (not normalized), or 133 (normalized).

F - 4.14 Internal Energy

per unit mass:

\[e = c^*_o T \]

\[c^*_o = \frac{R}{\gamma - 1} \] (compressible only)

PLOT3D function numbers: 140 (not normalized), or 141 (normalized).

F - 4.15 Stagnation Energy

per unit mass:

\[e^* = c^*_o T + \frac{1}{2} U^2 \]

PLOT3D function numbers: 142 (not normalized), or 143 (normalized).

F - 4.16 Stagnation Energy per Unit Volume

Stagnation energy multiplied by density. PLOT3D function number: 163 (not normalized).

F - 4.17 Kinetic Energy

Per unit mass, one-half the square of the velocity magnitude.

\[KE = \frac{1}{2} \| U \|^2 \]

PLOT3D function numbers: 144 (not normalized), or 145 (normalized).

F - 4.18 Velocity Components U, V, or W

The scalar velocity components. PLOT3D function numbers: 150 (u, not normalized), 151 (v; not normalized), or 152 (w; not normalized).

F - 4.19 Velocity Magnitude

The 2-norm of the velocity vector components:

\[|U| = \sqrt{u^2 + v^2 + w^2} \]

PLOT3D function number: 153 (not normalized).

F - 4.20 Mach Number

The flow speed divided by the local speed of sound, for compressible flow:

\[M = \frac{|U|}{a} \]

PLOT3D function number: 154 (not normalized).
F - 4.21 Speed of Sound

\[a = \sqrt{\gamma RT} = \left(\frac{2}{\gamma} - 1\right) \left(\frac{\gamma}{2} \frac{1}{\gamma - 1}\right) \] (compressible)

PLOT3D function number: 155 (not normalized).

F - 4.22 Cross Flow Velocity

This presumes that free-stream velocity is purely in the X-direction:

\[v = \sqrt{v^2 + w^2} \]

PLOT3D function number: 156 (not normalized).

F - 4.23 Equivalent Potential Velocity Ratio

The ratio of velocity magnitude to the potential velocity, as calculated with the incompressible Bernoulli equation. Refer to previous sections for definitions of \(\gamma \) and \(\rho \).

\[\frac{U}{\sqrt{\frac{p}{\rho} - \frac{1}{2}}} \]

PLOT3D function number: 159 (not normalized).

F - 4.24 X, Y, Z-momentum Component

Per unit volume, the product of density and the scalar velocity components.

\[\text{momentum}_x = \rho u \]

PLOT3D function numbers: 160 (X-momentum, not normalized), 161 (Y-momentum, not normalized), 162 (Z-momentum, not normalized).

F - 4.25 Entropy

\[s = c_s \ln \left(\frac{p}{\rho} \right) + c_s \ln \left(\frac{\rho^2}{\rho} \right) \]

PLOT3D function number: 170 (not normalized).

F - 4.26 Entropy Measure S1

\[s_1 = \left(\frac{p}{p_0} \right)^{\gamma} - 1 \]

PLOT3D function number: 171 (not normalized).
Scalar Flow Variables

F - 4.27 X-, Y-, Z-Vorticity

\[
\begin{pmatrix}
\omega_x \\
\omega_y \\
\omega_z
\end{pmatrix} = \begin{pmatrix}
\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \\
\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \\
\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}
\end{pmatrix}
\]

PLOT3D function numbers: 180 (X-Vorticity, not normalized), 181 (Y-vorticity, not normalized), 182 (Z-vorticity, not normalized).

F - 4.28 Vorticity Magnitude

\[|\boldsymbol{\Omega}| = \sqrt{\omega_x^2 + \omega_y^2 + \omega_z^2}\]

PLOT3D function number: 183 (not normalized).

F - 4.29 Q Criterion

\[Q = \frac{1}{2} \left(|\Omega|^2 - |S|^2 \right)\]

Where \(\Omega \) and \(S \) are the anti-symmetric and symmetric components of the velocity gradient tensor:

\[\Omega = \frac{1}{2} (\nabla \mathbf{u} - (\nabla \mathbf{u})^T)\]
\[S = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)\]

and the norms for the tensors are the Frobenius norms—the square root of the sum of the squares of all tensor elements.

F - 4.30 Swirl

\[Swirl = \frac{\omega \cdot \mathbf{U}}{\rho |\mathbf{U}|}\]

PLOT3D function number: 184 (not normalized).

F - 4.31 Velocity Cross Vorticity Magnitude

\[|\mathbf{U} \times \omega|\]

PLOT3D function number: 185 (not normalized).

F - 4.32 Helicity

\[H = \mathbf{U} \cdot \omega\]

PLOT3D function number: 186 (not normalized).

F - 4.33 Relative Helicity

\[H_r = \frac{\mathbf{U} \cdot \omega}{|\mathbf{U}| |\omega|}\]

PLOT3D function number: 187 (not normalized).
Calculate Variables Reference

F - 4.34 Filtered Relative Helicity

\[H_r \] as calculated above, but set to zero when \(\|U \cdot e| < 0.1U_a^2 \).

PLOT3D function number: 188 (not normalized).

F - 4.35 Shock

For compressible flow:
\[\frac{U}{x} \cdot \nabla p \]

PLOT3D function number: 190 (not normalized).

F - 4.36 Filtered Shock

Shock, as shown above, but set to zero when the magnitude of the pressure gradient \(\|\nabla p\| < 0.1\gamma p_a \).

PLOT3D function number: 191 (not normalized).

F - 4.37 Pressure Gradient Magnitude

\[\|\nabla p\| = \sqrt{p_x^2 + p_y^2 + p_z^2} \]

PLOT3D function number: 192 (not normalized).

F - 4.38 Density Gradient Magnitude

\[\|\nabla \rho\| = \sqrt{\rho_x^2 + \rho_y^2 + \rho_z^2} \]

PLOT3D function number: 193 (not normalized).

F - 4.39 X, Y, Z-density Gradient

\[
\begin{pmatrix}
\rho_x \\
\rho_y \\
\rho_z
\end{pmatrix}
\]

PLOT3D function numbers: 194 (X-density Gradient, not normalized), 195 (Y-density Gradient, not normalized), 196 (Z-density Gradient, not normalized).

F - 4.40 Shadowgraph

The Laplacian of density, \(\nabla^2 \rho \).

PLOT3D function number: 197 (not normalized).

F - 4.41 Divergence of Velocity

\(\nabla \cdot U = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} \)

PLOT3D function number: 158 (not normalized).

F - 4.42 Sutherland’s Law

Sutherland’s Law is a method of estimating the viscosity of a fluid from its temperature. The formula is:

\[\mu = C_1 \frac{T^{\gamma-2}}{T + C_2} \]
For the constants, Tecplot 360 EX uses the meters/kilograms/seconds values for air,

\[C_1 = 1.458 \times 10^{-6} \frac{\text{kg}}{\text{m s}^2} \]

and \(C_2 = 110.4 \, \text{K} \). Unlike other functions, this function is units-specific. Tecplot 360 EX uses the meters/kilograms/seconds units for this calculation, so the input temperature (data set variable) must be in Kelvin. The resulting viscosity will be in units of: \(\text{kg} / \text{m s} \).

F - 4.43 Isentropic Density Ratio

\[\frac{\rho^o}{\rho} = \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\frac{1}{\gamma - 1}} \]

F - 4.44 Isentropic Pressure Ratio

\[\frac{p^o}{p} = \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\frac{\gamma}{\gamma - 1}} \]

F - 4.45 Isentropic Temperature Ratio

\[\frac{T^o}{T} = 1 + \frac{\gamma - 1}{2} M^2 \]

F - 5 Vector Flow Variables

F - 5.1 Velocity
The velocity vector, \(\vec{U} \). PLOT3D function number: 200 (not normalized).

F - 5.2 Vorticity
See above for vorticity components. PLOT3D function number: 201 (not normalized).

F - 5.3 Momentum
Per unit volume, density multiplied by the velocity vector. PLOT3D function number: 202 (not normalized).

F - 5.4 Perturbation Velocity

\[\vec{U}' = \vec{U} - \vec{U}_\infty \]

PLOT3D function number: 203 (not normalized).

F - 5.5 Velocity Cross Vorticity

\[\vec{U} \times \vec{\omega} \]

PLOT3D function number: 204 (not normalized).
Calculate Variables Reference

F - 5.6 Pressure Gradient
The vector of pressure partial derivatives in space:

\[\nabla p = \begin{bmatrix} \frac{\partial p}{\partial x} \\ \frac{\partial p}{\partial y} \\ \frac{\partial p}{\partial z} \end{bmatrix} \]

PLOT3D function number: 210 (not normalized).

F - 5.7 Density Gradient
The vector of density partial derivatives in space:

\[\nabla \rho = \begin{bmatrix} \frac{\partial \rho}{\partial x} \\ \frac{\partial \rho}{\partial y} \\ \frac{\partial \rho}{\partial z} \end{bmatrix} \]

PLOT3D function number: 211 (not normalized).

F - 6 The Velocity Gradient Tensor
In addition to the scalar and vector variables listed in the previous sections, Tecplot 360 EX can calculate one tensor variable, the velocity gradient:

\[\nabla \mathbf{U} = \begin{bmatrix} \frac{\partial U}{\partial x} & \frac{\partial U}{\partial y} & \frac{\partial U}{\partial z} \\ \frac{\partial V}{\partial x} & \frac{\partial V}{\partial y} & \frac{\partial V}{\partial z} \\ \frac{\partial W}{\partial x} & \frac{\partial W}{\partial y} & \frac{\partial W}{\partial z} \end{bmatrix} \]

Each component in the tensor is stored as a separate variable in the dataset. The names indicate which component they represent, such as dU/dX, dU/dY and so on.
Functional Limits

G - 1 Hard Limits

The following hard limits are designed into Tecplot 360 EX. Your workstation’s memory may, however, not always be sufficient to allow the product to reach these limits.

Table G - 1: Hard limits for Tecplot 360 EX

<table>
<thead>
<tr>
<th>Item</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of data points per data set</td>
<td>Quintillions (limited by memory)</td>
</tr>
<tr>
<td>Maximum number of data points per zone</td>
<td>Quintillions (limited by memory)</td>
</tr>
<tr>
<td>Largest floating point absolute value</td>
<td>10^{150}</td>
</tr>
<tr>
<td>Smallest non-zero floating point absolute value</td>
<td>10^{-150}</td>
</tr>
<tr>
<td>Maximum number of datasets</td>
<td>2048</td>
</tr>
<tr>
<td>Maximum number of zones</td>
<td>More than 2 billion</td>
</tr>
<tr>
<td>Maximum number of variables</td>
<td>More than 2 billion</td>
</tr>
<tr>
<td>Maximum number of frames</td>
<td>2048</td>
</tr>
<tr>
<td>Maximum number of pages</td>
<td>2048</td>
</tr>
<tr>
<td>Maximum number of macro variables</td>
<td>400</td>
</tr>
<tr>
<td>Maximum number of value blank constraints</td>
<td>8</td>
</tr>
<tr>
<td>Maximum number of contour groups</td>
<td>8</td>
</tr>
</tbody>
</table>
Functional Limits

Table G - 1: Hard limits for Tecplot 360 EX

<table>
<thead>
<tr>
<th>Item</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of geometries</td>
<td>Limited only by memory</td>
</tr>
<tr>
<td>Maximum number of polylines per line geometrya</td>
<td>50</td>
</tr>
<tr>
<td>Maximum number of points per circle or ellipse</td>
<td>720</td>
</tr>
<tr>
<td>Maximum number of custom label sets</td>
<td>Limited only by memory</td>
</tr>
<tr>
<td>Maximum number of custom labels per set</td>
<td>5000</td>
</tr>
<tr>
<td>Minimum frame width or height</td>
<td>0.1 inches</td>
</tr>
<tr>
<td>Maximum frame width</td>
<td>300 inches</td>
</tr>
<tr>
<td>Maximum streamtraces per frame</td>
<td>32,000</td>
</tr>
<tr>
<td>Maximum number of streamtrace steps</td>
<td>10,000</td>
</tr>
<tr>
<td>Maximum number of color map overrides</td>
<td>16</td>
</tr>
<tr>
<td>Maximum preview width for EPS files</td>
<td>1024</td>
</tr>
<tr>
<td>Maximum preview height for EPS files</td>
<td>1024</td>
</tr>
<tr>
<td>Maximum number of user-defined color map control points</td>
<td>90</td>
</tr>
<tr>
<td>Maximum number of raw user-defined color map entries</td>
<td>800</td>
</tr>
<tr>
<td>Maximum number of characters in variable name</td>
<td>128</td>
</tr>
<tr>
<td>Maximum number of characters in zone title</td>
<td>128</td>
</tr>
<tr>
<td>Maximum number of characters in dataset title</td>
<td>256</td>
</tr>
<tr>
<td>Maximum number of views per view stack</td>
<td>16</td>
</tr>
<tr>
<td>Maximum number of characters in an auxiliary data string</td>
<td>32,000</td>
</tr>
<tr>
<td>Line length limit in ASCII .dat files (character limit per line)</td>
<td>32,000</td>
</tr>
</tbody>
</table>

a. A polyline is a continuous series of line segments, and can be a subset of a line geometry.

Table G - 2: Hard Limits for plot styles

<table>
<thead>
<tr>
<th>Item</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printing Gouraud shaded plots with continuous flooding</td>
<td>On screen or exported bitmap image only</td>
</tr>
<tr>
<td>Printing plots with translucency</td>
<td>On screen or exported bitmap image only</td>
</tr>
</tbody>
</table>
G - 2 Soft Limits

The following soft limits may be changed by editing your Tecplot 360 EX configuration file. The configuration file, `tecplot.cfg`, is installed in your Tecplot 360 EX home directory.

Table G - 3: Soft limits for Tecplot 360 EX

<table>
<thead>
<tr>
<th>Limit</th>
<th>Soft Limit</th>
<th>Hard Limit</th>
<th>Macro Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points per line(^a)</td>
<td>20000</td>
<td>Quintillions</td>
<td>MAXPTSINALINE</td>
</tr>
<tr>
<td>Contour levels</td>
<td>50</td>
<td>5,000</td>
<td>MAXNUMCONTOUR</td>
</tr>
<tr>
<td>Characters per text label</td>
<td>16,000</td>
<td>100,000</td>
<td>MAXCHRSINTEXLABELS</td>
</tr>
<tr>
<td>Picked objects</td>
<td>1500</td>
<td>More than 2 billion</td>
<td>MAXNUMPICKOBJECTS</td>
</tr>
<tr>
<td>Load on demand - min threshold</td>
<td>0.3</td>
<td>(\phi)</td>
<td>LODTHRESHOLDMINFRACT</td>
</tr>
<tr>
<td>Load on demand - max threshold</td>
<td>0.7</td>
<td>1</td>
<td>LODTHRESHOLDFRAC</td>
</tr>
<tr>
<td>Available processors</td>
<td>(\phi)</td>
<td>64</td>
<td>MAXAVAILABLEPROCESSORS</td>
</tr>
</tbody>
</table>

\(^a\) Points per line is the limit on the number of points allowed in the following: line segment geometries, stream termination lines, and contour lines. For line segment geometries, this is the total number of points used in all polylines contained in the geometry.

\(^b\) LODTHRESHOLDMINFRACT may not be less than 0 (the given hard limit is the lower bound, not the upper limit as with the other hard limits).

\(^c\) If MAXAVAILABLEPROCESSORS is 0, Tecplot 360 EX queries the hardware for the number of processors and uses that value.
554

Functional Limits

G - 3 Limits When Working Remotely

When working with complex geometries (on the order of 50 million elements) in Tecplot 360 EX on non-Windows platforms, running Tecplot 360 EX with the -mesa flag may improve performance. Because using -mesa causes geometry computation to occur at the server (causing the remote machine to receive only the resulting images), display, zooming, and other capabilities may work faster past this threshold. Using the -mesa option will reduce rendering quality, however.

This diagram illustrates the differences in remote rendering resulting from use of the -mesa flag:
Index

Numerics

2D
range options 256
3D 50, 180-184
axis limits dialog 181
orientation axis dialog 181
reset axis 180
rotate dialog 182
rotation 28
view details dialog 50, 184

A
Add-on 471-500
Extract Precise Line 482
Load 471
Measure Distance 486
Multi-Frame 487
Solution time/strand editor 495
Time-series 498
Write data as formatted text 499
Adjustor tool 26
Advanced 3D control dialog 181
Advanced quick edit dialog 474
Anchor alignment 206
snap modes 24
Animate 23, 441-458
advanced techniques 451
AVI export 454
controls 23
IJK blanking 444
IJK-planes 443
iso-surfaces 446
mapping 447
mappings dialog 447
movie file 453-458
slice 448
streamlines 367
streamtrace 449
time 442
tools 441
zone 450
Animate dialog 449
Animation options dialog 368
ANSYS files, load 84
Antialiasing 413
Arrowhead
vector 213
Aspect ratio 181
calculate 540
Attachment lines 377
Auto spacing 262
AutoCAD loader 77
Auxiliary data
FLOT3D auxiliary data 117
AVI export 454
axial duplication 321
axial rotation 317
Axis 180, 255-270
axis details dialog 255
details dialog 255-270
display 255
grid area 267
grid options 260
lines 265
polar range options 258
reset 3D 180
tick mark labels 262
tick marks 261
time/date format 268
title 264
variable assignment 255
XY, 2D, 3D range options 256

B
Backward Compatibility
exporting data files 392
Ballistic coefficient, calculate 370
Batch processing 425-428
Bitmap image 409
Blanking 293-299
animate IJK blanking 444
IJK blanking 297
value blanking 293
BMP 409
BMP file 409
Boundary
cell face 175
edit 344
specify 342

C
Calculate 92, 301-333, 335-377, 543-549
alter data 301
ballistic coefficient 370
boundary values 308
conductivity 336
density 336, 339
drag coefficient 372
examples 311
FLOW3D derived variables 92
gamma 336
gas constant 336
gradient 349
IJK aspect ratio 540
IJK stretch ratio 540
integrals 309
lift and drag 362
mass flow rate 360
mass-weighed stagnation pressure 361
Nusselt number 372
on-demand variables 348
particle paths 364
pressure 339
scalar flow variables 543-549
select function 349
shock surfaces 376
skewness 541
solution accuracy 373
sound speed 339
specific heat 336
streamlines 364
temperature 339
total mass 359
INDEX

556
turbulence 363
undo 348
variables 346
vector flow variables 549
vector grid quality functions 543
viscosity 336
volume under a surface 358
Calculating normal vector 351
Carpet data format 81
Cart3D 121
Cartesian plot 171–185
Cell face
boundary 175
exposed 175
CFD 335–377
boundary options 341
calculate turbulence 363
calculate variable 346
field variables 339
fluid flow, extract features 375
fluid properties 335
geometry options 341
interpolate 351–363
particle paths 364–373
reference values 338
solution error 373
specify boundary 342
streaklines 364–373
unsteady flow 345
Change format dialog 500
Character
ASCII 161
custom 467
Color
choosing 138–139
contour layer 198
color chooser 138
Command line options 503–507
Compressible fluid 337
Conductivity, calculate 336
Configuration files, customize 460, 553
conjuguates 316
Connectivity list 53
context menu 19
Contour details dialog 195–206
Contour layer 193–207
active slice group 231
add/delete levels 30
bands 201
coloring 198
groups 196
labels 203
add/delete 31
legend 205
line extract 207
lines 203
modify 194
countour legend
box around 207
Coordinate system 37
Copy 51
Copy to clipboard dialog 413
Copy view 50
Create
circular zone dialog 318
duplicate zone dialog 320
frames 38
mappings dialog 145
mirror zone dialog 320
multiple frames dialog 477
rectangular zone dialog 318
zone 317
Current solution time 442
Curve information dialog 157
Curve-fit
exponential 151
extended 154
general 155
goodness of fit 158
information dialog 157
none 156
polynomial 150
power 152
weighting variables 157
Customize 459–470
character definition 467
configuration files 460
plot rendering 463–467
symbol definition 467
tecplot.add 472
tecplot.cfg 553
Cut 51
D
Dashboard 16
Data 54, 63–128, 291–333
batch processing 425–428
blanking, 293
carpet format 81
CFD analysis 335–377
create zone 317
dataset information 133–137
datasets 36
delete variable 325
delete zone 324
extract from zone 322
face neighbors 39
file writing 395
finite-element 57
fit 48
fluid properties 335
frames 36
hierarchy 35
interpolate 325
irregular 60
journaling, 132
loaders, see Data loaders 111
macros 417–423
manipulate 291
operations 301–333
ordered 54, 56
overwrite files 127
point extract 323
probing 379–387
reference values 338
sharing 132
smoothing, 313
spreadsheet 331
Data structure, see Data structure
subzone extract 322
variables 58
zones 36
Data alter 301
Data loaders 63–128
CGNS 72
CONVERGE 77
DEM 77
DXF 77
EnSight 79
Excel 79
Fluent 83–89
Flow-3D 89–93
FLUENT 93–97
General Text 99–108
HDF 5 109–111
HGF 108–109
Kiva 111
PLOT3D 112–113
PLY 118
Tecplot-format 118–119
Text Spreadsheet 120
Data structure 53–61
connectivity list 53
face neighbors 59
finite-element data 57
irregular data 60
ordered data 54, 56
variables 58
Dataset information dialog 133
Datasets 36
Date/time format 268
Delete
frames 44
particle paths 368
streaklines 368
variable 325
zone 324
Density, calculate 336
Dialog
3D axis limits 181
3D orientation axis 181
3D rotate 182
3D view 59
3D view details 184
advanced 3D control 181
advanced quick edit tool 474
animate IJK blanking 444
animate IJK-planes 443
animate mappings 447
animate zones 493
animation options 368
axis details 255–270
calculate 346
change format 500
color chooser 338
contour details 195–206
copy plot to clipboard 413
create circular zone 318
create duplicate zone 320
create mirror zone 320
create multiple frames 477
create rectangular zone 318
curve information 157
data spreadsheet 331
dataset information 133
delete variable 325
edit active frame 39
edit boundary 344
enter ASCII character 161
enter contour level range 198
enter mapping name 149
enter range 355
error analysis 373
exponential fit 151
export 405–457
extract contour lines 207
extract flow features 375
extract subzone 322
fluid variables 339
fluid properties 335
general text 53–61
geometry and boundary options 341
geometry details 286
group zones by time step 346
image geometry details 285
integrate 351–363
inverse-distance interpolation 326
iso-surface details 249–253
kriging 329
label points and cells 179
light source 225
line legend 166
linear interpolation 323
load ANSYS results 84
macro recorder 417
macro variables 422
mapping style 142–169
mappings, create 145
paper setup 45
parametric spline settings 154
particle mass 371
particle mass options 370
particle paths 364
performance 443–467
power fit 152
print 397
print setup 398
probe at 379–387
reference values 338
reference vector 214
RGB coloring options 139
rotate 50
scatter legends 220
scatter size/font 219
select function 349
select import format 63
select variables 162, 209
set links for active frame 41
set origin 363
smooth 313
specify equations 301
spline settings 153
stimson interpolation 156
strand editor 496
streaklines 364
streamtrace 236–247
streamtrace details 235–248
text details 272
latex 285
regular 272
text options 274
time details 442
translate/modify 49
turbulence 363
unsteady flow 345
value blanking 294
vector arrowheads 213
vector length 212
write data options 395, 499
zone style 172–177
Dynamic Text 276

E
Edge layer 187–191
display 191
modify 190
Edit 50
active frame 39
boundary dialog 344
clear 51
copy 51
cut 51
paste 51
undo 50
Enter ASCII character dialog 161
Enter contour level range dialog 198
Enter mapping name dialog 145
Enter range dialog 355
EPS export 405
Equations, see Calculate 311
Error analysis dialog 373
Error Bars, XY line 161
Excel
 carpet format 81
 loader restrictions 82
maco 509
other formats 82
Exponential curve-fit 151
Exponential fit settings dialog 151
Export 389–413
antialiasing 413
AVI 454
BMP 409
clipboard 413
dialog 405–457
EPS 405
image 408
Movie 453
PNG 411
PostScript 407
printing 397
Tecplot viewer 404
TIFF 412
vector graphics 405
WMF 407
Exposed cell face 175
Extended Curve-fit 154
Extract 207, 375, 377
attachment lines 377
contour lines dialog 207
existing zone data 322
flow features dialog 375
separation lines 377
subzone dialog 322
vortex core 378
Extract Precise Line add-on 482
Extrapolation, Richardson 373
Eye coordinate system 244

F
Face neighbor 59
fallback, fonts 273
Field plot 171–185, 294
3D plots 180–185
labels 178
time aware 177–178
value blanking 294
Field variables dialog 339
File format, export BMP file 409
Finite-element data 57
Fit 48
Fit, data 48
Flow, unsteady 345
Fluid properties dialog 335
font fallback 273
text folders 273
FontPath 273
Fourier transforms 315
Frame
create 38
create new 32
delete 44
edit 39
edit frame name 41
link 41
redraw 47
Frames 38
Function, select 349

G
Gamma ratio 336
Gas constant, calculate 336
General curve-fit 155
General geometries 271–289, 341
3D line 288
CFD options 341
creating 284
details-dialog 286
insert 32
link to macro 288
Geometry and boundary options dialog 341
Goodness of fit 158
Gradients, calculate 349
Grid, set up 46
Group zones by time step dialog 346

H
Hard limits 551
Help 32
Hot Keys, see Keyboard shortcuts
Image 271–289, 408

I
Image 271–289, 408
BMP graphics format files 409
export 408
game details dialog 285
game referenced image dialog 286
insert 31
upersampling 413
Incompressible fluid 337
Indices, I, J, K 165
Integrate dialog 351–363
Interface 18
interface coordinate systems 37
management options 45
menubar 18
paper setup 45
sidebars 20
status line 32
toolbar 25
workspace 32
workspace fit 50
Interpolation
data 325
kriging 329
Inverse-distance interpolation dialog 326
Irregular data 60
Iso-surface 249–253
animate 446
contour and shade 251
definition 290
extract 253
groups 249
mesh and vector 252
I
Journal, data 132
K
Keyboard shortcuts 515–519
Kriging dialog 329
L
Label
contour 203
contour labels 31
field plot 178
points and cells dialog 179
spacing 262
LaTeX
examples 282
setup 282
Layer 187–207
contour 193–207
bands 201
coloring 198
labels 203
legend 205
lines 203
modify 194
curve types 147–156
dege 187–191
display 391
modify 190
line map 146–159
map 24
mesh 187–191
modify 188
types 188
scatter 217–220
shade 221–222
symbols 159
translucency 223–226
vector 209–215
Layout package file 394
Legend
contour 205
scatter 221
Light source dialog 225
Lighting 223–226
Line
extract contour 207
specify number format 168
Line legend 166
dialog 166
Line segments 156
Linear Fit 149
Linear interpolation dialog 325
Link
frames 41
Link Time 41
Load
style from file 44
Load data 63–128
CCNS 72
CONVERGE 77
DEM 77
DXF 77
EnSight 79
Excel 79
FEA 83–89
Flow-3D 89–93
FLUENT 93–97
General Text 99–108
HDF 5 109–111
HGF 108–109
Kiva 111
overwrite files 127
PLOT3D 112–113
PFL 118
Tecplot format 118–119
Test Spreadsheet 120
Load Remote Data 122
LPK view 511
Macro 311, 417–423, 451, 480, 509
create 417
create movie file 451
debug 421
equations 311
Excel 509
extend time 480
play back 420
recorder dialog 417
text and geometry links 288
variables dialog 422
Mapping

559
create 145
name 145
style 142–169
Mass flow rate, calculate 360
Measure Distance add-on 486
Menu
analyze 335
copy view 50
data 314
edit 50
help 32
management options 45
menubar 18
paste view 50
sidebar 47
spreadsheet 331
toolbar 23
show 47
translate/magnify 49
view menu 47
Mesh layer 187–191
modify 188
types 188
hidden line 188
overlay 188
wire frame 188
MPEG-4 456
Multi-Frame add-on 487
Normal vector 351
Objects, derived
blanking settings 299
isosurfaces 249–253
slices 227–234
streamtraces 235–248
Ordered data 54, 56
Output 389–396
export 403–415
antialiasing 413
BMP 409
clipboard 413
EPS 405
image 408
Movie 453
PNG 411
PostScript 407
TIFF 412
vector graphics 405
WMF 407
extract contour lines 207
eye coordinate system 244
geometries 271–289
images 271–289
isosurfaces 249–253
labels 178
lighting 223–226
line legend 166
specify number format 168
mesh layer 187–191
modify 188
types 188
points 173
scatter layer 217–220
shade layer 221–222
sharing data 132
slices 227–234
solution accuracy 374
streamtraces 235–248
surfaces 174
text 271–289
time aware 177–178
translate 49
translucency 223–226
types 22
vector layer 209–215
XY and Polar 141–169
creating 142–146
Particle paths and streaklines dialog 364
Paste 50, 51
Performance dialog 463–467
Plot 129–289
add-on 471–503
animate 441–458
axes 255–270
center 49
color 138–139
coloring 198
contour layer 193–207
bars 201
labels 203
legend 205
lines 203
modify 194
create 129
customize 439–470
data journaling 132
display 191
modify 190
edit 50
export 403–413
antialiasing 413
BMP 409
clipboard 413
EPS 405
image 408
Movie 453
PNG 411
PostScript 407
TIFF 412
vector graphics 405
WMF 407
extract contour lines 207
eye coordinate system 244
field 171–185
geometries 271–289
images 271–289
isosurfaces 249–253
labels 178
lighting 223–226
line legend 166
specify number format 168
mesh layer 187–191
modify 188
types 188
points 173
scatter layer 217–220
shade layer 221–222
sharing data 132
slices 227–234
solution accuracy 374
streamtraces 235–248
surfaces 174
text 271–289
time aware 177–178
translate 49
translucency 223–226
types 22
vector layer 209–215
XY and Polar 141–169
creating 142–146
curve types 147–156
error bars 161
IJK-indices 165
line bars 164
line map layer 146–159
symbols map layer 159
zoom 47
Plot sidebar 21
Pltview 512
Polar
axis range options 258
plots 141–169
Polynomial curve-fit 150
PostScript export 407
Power curve-fit 152
Power fit settings dialog 152
Preplot 512
Plot 397–401
print dialog 397
setup dialog 398
Probe 31, 379–387
R
Redraw 24
auto 25
frame 47
Reference
values dialog 338
vector dialog 214
RGB
coloring options 139
Richardson extrapolation 373
right click 19
Rollerball 28
Rotate 50, 182
rotation 317
Ruler, set up 46
S
Scatter layer 217–220
legends 220
modify 217
size/font 219
Scatter size/font dialog 219
Scripting 415–433
Select function dialog 349
Select import formal dialog 63
Select variables dialog 162, 209
Selector tool 26
Shade layer 221–222
modify 221
Sharing, data 132
Shortcut, see Keyboard shortcuts
Sidebar
auto redraw 25
map layers 24
plot types 22
redraw buttons 24
show 47
snap modes 24
snap to grid 24
snap to paper 24
transient controls 23
sidebars 20

Pages 25
Plot 21
Slice 227–234, 448
animate 448
contour page 231
derived from dataset 227
details dialog 228
extract to zones 233
groups 228
mesh, shade, edge 232
position page 228
tool 29
vector page 232
Slice details dialog 448
Smooth dialog 313
Smooth, data 313
Snap mode 24
Soft limits 553
Solution error 373
Solution time 442
Solution time/strand editor add-on 495
Special characters 274
Specific heat, calculate 336
Specify equations dialog 301
Specify number format 168
Spherical rotation 28
Spline 153
Spline settings dialog 153
Spline, parametric 153
Stineman interpolation dialog 156
Strand editor dialog 496
Streamlines, calculate 364–373
Streamribbon 237
Streammod 237
Streamtrac 235–248, 449
add 30
animate 243, 449
customized lines 239
details dialog 235–247
equations dialog 301
errors 247
extract as zone 247
integrate 245
no-slip boundaries 247
placement 237
rod/ribbon 240
termination line 30, 243
timing 241
Style
load 44
loading 44
Stylesheet 392
Supersampling 413
Surfaces, view fit 48
Symbol
custom 467
map layer 159
Syntax
load add-on 471–500
loaders 63–128
SZL Server 122
T
Tecplot
tecplot.add file 472
Zone 36, 317, 322–324
animate zones dialog 450
create 317
data extract from existing 322
delete 324
extract streamtrace 247
point extraction 323
slice extract 233
variable sharing 310
Zone style dialog 172–177
Zoom 47
Zoom tool 27, 184